Tag Archives: astrophysics

Two Kernel-phase A&A papers out this month!

The April 2020 issue of Astronomy & Astrophysics will feature two papers from the Nice KERNEL team!

Paper #1: Angular Differential Kernel-phase

The first paper features the results of a study led by graduate student Romain Laugier who’s successfully adapted an angular differential observing technique commonly used in high-contrast imaging to the kernel-phase scenario. This approach, coined angular differential kernel-phase (ADK) takes advantage of the sky rotation experienced by the SCExAO instrument at the Nasmyth focus of the Subaru Telescope when the field rotator is turned off. The technique makes it possible to better calibrate the biasing effect introduced by AO-residuals in the presence of quasi-static aberrations. Whereas interferometric observations typically require to alternate between a target of interest and a calibration star, this new approach spends 100% of the observing time on the target of interest, making it a more efficient alternative.

Figure extracted from the Laugier et al (2020) publication introducing the angular differential kernel-phase observing mode.

The publication is available in open access on the Astronomy and Astrophysics website!

Paper #2: Kernel-phase… version 2.0?

The second paper features the result of a study led by KERNEL project PI Frantz Martinache. This paper goes back to the roots of kernel-phase. After several years of development of the XARA pipeline carried out in the context of the KERNEL project, it was time to revisit previous analysis results in the light of its latest developments. The paper shows that while overall successful, early uses of kernel-phase were not particularly careful. The paper shows that refined descriptions of the diffractive apertures by instruments leads to a major improvement of the kernel-phase analysis and reduces the importance of systematic errors.

Illustraction extracted from the Martinache et al (2020) publication, showing from top to bottom, how a better model of the diffractive aperture can reduce the amount of systematic error. By either increasing the density of the aperture model (middle row) or by introducing a transmission model (bottom row), the magnitude calibration signal (the red or the orange curves on the right hand side plots) can be considerably reduced in comparison with the astrophysical signal (the blue curve).

Using these new aperture modeling prescriptions, the authors then reprocess previously published observations from ground-based and space-borne observatories and shows major improvements in both cases!

In the same vein as the ADK idea at the core of the Laugier et al (2020) publication, the paper quickly explores the possibility offered by consecutive observations at multiple wavelengths. For a target whose aspect would change depending on the wavelength, spectral differential kernel-phase (SDK?) would be a powerful observing mode that would spend

The publication is of course also available in open-access on the Astronomy & Astrophysics website!

Kernel-phase imaging VLT/NACO paper!

In this new publication using the tools developed in the context of the KERNEL project, ANU-based PhD student Jens Kammerer announces the detection of eight low-mass companions to stars observed using VLT/NACO in the L-band, five of which were previously unknown,

Among these new companions, two appear at angular separations ranging between 0.8 and 1.2 λ/D (i.e. 80 and 110mas⁠), demonstrating that from the ground, kernel-phase makes it possible to achieve a resolution better than the traditionally accepted diffraction limit of a telescope.

Corner-plot of the best-fitting parameters for the two close companion candidates HIP50156 (top) and HIP39718 (bottom) recovered by the kernel-analysis of archival VLT/NACO L-band images.

Congratulations to Jens whose paper was accepted for publication by the Monthly Notices of the Royal Astronomical Society (MNRAS) and should appear in the June 2019 edition of the journal! The preprint version of the paper is already available for download on the arXiv.org website: https://arxiv.org/abs/1903.11252

Kernel-phase science paper accepted by A&A!

Romain Laugier, PhD student contributing to the KERNEL project, saw his first paper accepted by the journal Astronomy & Astrophysics. The paper shows how images affected by some amount of saturation can be salvaged to make them kernel-compatible again.

Using an archival HST/NICMOS dataset from 1997, Romain was able to show on a known low-mass binary that the recovery algorithm is effective. The signature of the 4.36 magnitude contrast companion, invisible in the original image, is present in the kernel-phase extracted from that image. This kernel-signature was used to constrain the position and contrast of the companion.

Saturated HST/NICMOS image of Gl 494.

This new resolved observation of the low mass companion to Gl 494 along with other recently published images, combined with a long series of archival radial velocity observations by two instruments, lead to very strong constraints on the orbital elements, and ultimately, the dynamical masses of this binary object.

Visual orbit of Gl 494 b.
Radial velocity of Gl 494 induced by the presence of the low mass companion.

Congratulations to Romain for successfully bringing this paper to the finish line: may this be the first of many others to come! The preprint version of the paper is available for download on the arXiv.org website: http://arxiv.org/abs/1901.02824