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Single-telescope interferometry

?



Marseille, 1873



“Le grand télescope 
Foucault de l’Observatoire 

de Marseille”

Why would you want to 
mask what was then the 
best telescope available?

Marseille, 1873
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Edouard Stephan attempts 
the first stellar diameter 

measurement.

With a maximum baseline 
of 65 cm, he concludes 

about the diameter of stars
 

∅★ < 0.158”

Marseille, 1873
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Measure complex visibility
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More than two apertures?

pupil interferogram

interpretation is a bit harder... but in the Fourier space...



Analysis in the Fourier plane

pupil
Fourier plane

(uv-plane)
At each uv-point, one visibility + one phase



Analysis in the Fourier plane

pupil
Fourier plane

(uv-plane)
At each uv-point, one visibility + one phase



Analysis in the Fourier plane

pupil
Fourier plane

(uv-plane)
At each uv-point, one visibility + one phase



Analysis in the Fourier plane

pupil
Fourier plane

(uv-plane)
At each uv-point, one visibility + one phase



Analysis in the Fourier plane

pupil
Fourier plane

(uv-plane)
At each uv-point, one visibility + one phase



The mask geometry matters



The mask geometry matters



The mask geometry matters

same number of apertures... 
but more uv coverage (21 points instead of 9)
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And a full aperture...



And a full aperture...

is very, very,

very, very,

very redundant

Atmosphere affects the phases
Redundancy destroys the amplitudes
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Toward an easier problem
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Toward an easier problem

|FT|2

Image

Modulation
Transfer
Function

apparently simple apparently complex

ill posed well posed



To take advantage of self-calibration

9-hole mask
36 visibilities
84 triangles

(28 independent)



Φ(1-2) = Φ(1-2)0 + (Φ1-Φ2)
Φ(2-3) = Φ(2-3)0 + (Φ2-Φ3)
Φ(3-1) = Φ(3-1)0 + (Φ3-Φ1)

To take advantage of self-calibration

9-hole mask
36 visibilities
84 triangles

(28 independent)



Φ(1-2) = Φ(1-2)0 + (Φ1-Φ2)
Φ(2-3) = Φ(2-3)0 + (Φ2-Φ3)
Φ(3-1) = Φ(3-1)0 + (Φ3-Φ1)

Jennison, 1958, MNRAS, 118, 276

To take advantage of self-calibration

An ideal observable:
the closure-phase!

9-hole mask
36 visibilities
84 triangles

(28 independent)
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Super-resolution with closure-phase

Martinache et al, 2009, ApJ, 695, 1183



GJ 164 AB Orbit

100 50 0 -50 -100
RA motion (mas)

-100

-50

0

50

100

D
ec

 m
ot

io
n 

(m
as

)

GJ 164 AB Orbit

100 50 0 -50 -100
RA motion (mas)

-100

-50

0

50

100

D
ec

 m
ot

io
n 

(m
as

)
Super-resolution with closure-phase

Martinache et al, 2009, ApJ, 695, 1183



GJ 164 AB Orbit

100 50 0 -50 -100
RA motion (mas)

-100

-50

0

50

100

D
ec

 m
ot

io
n 

(m
as

)

GJ 164 AB Orbit

100 50 0 -50 -100
RA motion (mas)

-100

-50

0

50

100

D
ec

 m
ot

io
n 

(m
as

)
Super-resolution with closure-phase

Martinache et al, 2009, ApJ, 695, 1183

GJ 164 AB
M1 = 0.247 +/- 0.019 MS

M2 = 0.096 +/- 0.008 MS



40 % strehl
0.3 deg scatter

stability ~ λ/1000
all passive !

Good for faint companions
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40 % strehl
0.3 deg scatter

stability ~ λ/1000
all passive !

Good for faint companions

Understand your errors: statistical and systematic
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is initiated at the computer, the desired timing parameters
and commands are sent to the Arduino. The Arduino sends
the appropriate timing signals based on its internal clock
(via 5V TTL pulses) to the LCVR controller and camera.
The computer software and Arduino remain in communica-
tion to allow further user interaction. Other settings, such
as the desired LCVR voltages, temperature, camera readout
patterns and gain, are sent directly to the devices over USB
cables.

3 DIFFERENTIAL DATA ANALYSIS

They key to VAMPIRES’ performance is its differential mea-
surement process, which is based on a calibration strategy
adapted from conventional masking interferometry (see Sec-
tion 1.1). However, rather than employing a separate PSF
reference star, calibration is performed between Fourier ob-
servables extracted from images in simultaneously-recorded
orthogonal polarisations. This differential multi-tiered cal-
ibration process removes most sources of spatially and
temporally-dependent systematic error, producing a purely
polarimetric set of observables.

Because calibration takes place on Fourier domain ob-
servables, the first step is the extraction of the two interfero-
grams arising from each Wollaston channel in every camera
frame to be windowed and Fourier transformed. The vis-
ibilities are then extracted from the power spectrum, and
accumulated over a data cube (corresponding to a given
LCVR and HWP state) consisting of around 200 frames.
The bispectrum (the triple-product of the complex ampli-
tudes of three baselines forming a closing triangle) is also
accumulated, and the argument of the accumulated bispec-
trum gives the closure phase. For the non-redundant aper-
ture masks, the complex visibility data are extracted at the
uv coordinates corresponding to the set of known baselines
formed by the mask. For the partially-redundant annulus,
discreet baselines are not present, so instead the Fourier
domain is sampled uniformly while avoiding the regions of
low power associated with gaps in the annulus (covering
the secondary-mirror support structures as depicted in Fig-
ure 2).

An overview of the calibration process is depicted in
Figure 3. The Wollaston prism allows measurements of or-
thogonal polarisations to be taken simultaneously and cal-
ibrated against each other, resistant to time-varying errors
but subject to non-common path error. Conversely, the fast
channel-switching LCVR allows the two channels of the Wol-
laston prism to be switched, and calibration performed be-
tween channel-switched states. This removes the effect of
non-common path in the Wollaston, although with switch-
ing timescales longer than τ0 it is subject to some time-
varying error. The calibration of these two calibrated quanti-
ties against one another - forming a second tier of calibration
- provides resistance against both these error types. Finally,
channel-switching of the bulk of the instrument takes place
via a rotating half-wave plate upstream. This calibrates out
spatially-dependent systematic errors due to the interven-
ing optics. The rotating HWP also allows both linear Stokes
parameters (Q and U) to be measured by rotating the po-
larisation 45 degrees.

For example, the visibilities from the two channels of
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Figure 3. A pictorial depiction of our three-tiered calibration

procedure. Calibration is performed between orthogonal polari-

sations rather than between a target and PSF calibrator star, to

yield a polarimetric differential observable. The star in the black

squares represents the interferogram as it appears on the detec-

tor. The ‘H’ or ‘V’ next to the black square indicates whether

this polarisation is Horizontal or Vertical, as determined by the

combination of LCVR state, HWP position and Wollaston prism

channel. The top-most image is denoted ‘horizontal’ for purposes

of demonstration. A series of divisions of visibilities create the

final differential observable whilst systematic errors are cancelled

out; an analogous process is performed with the closure phases

using differences rather than ratios.

the Wollaston prism (VCh1, VCh2) may be calibrated against
one another to produce

VCh1

VCh2

=
VHoriz

VVert

(1)

This is repeated but with polarisations rotated by 90 degrees
using the LCVR, yielding

V �
Ch1

V �
Ch2

=
VVert

VHoriz

(2)

These two differential quantities are then calibrated against
one another, and raised to the power of 1/2 to maintain
units:

�
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This is repeated for all other states and half-wave plate posi-
tions, as depicted in Figure 3, resulting in a final, calibrated
VHoriz/VVert observable cleaned of almost all temporal and
non-common-path errors. The same process takes place for
the closure phases, but with differences rather than ratios,
to produce a final calibrated CPHoriz − CPVert. Note that
the ‘horizontal’ and ‘vertical’ polarisation angles referred to
here are arbitrary (ultimately mapping to a known position
angle on sky), and conceptually represent any two orthogo-

c� 2014 RAS, MNRAS 000, 1–14

Calibrate, calibrate, calibrate!

Norris et al, 2015, MNRAS, 447, 2894VAMPIRES
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σ = 6.8 %

a) 1 tier - Wollaston prism only.  No temporal variation leads to small error 
bars, but strong systematic errors (from non-common path) dominate.

σ = 2.4 %

b) 1 tier - LCVR only.  No non-common path error, and the mean is ~ 1.0. 
However since switching is slower than seeing temporal errors lead to 
large error bars.

σ = 0.86 %

c) 2 tiers - Wollaston + LCVR.  The Wollaston and LCVR cancel each 
others errors. Systematic errors are still visible.

σ = 0.42 %

d) 3 tiers - Wollaston + LCVR + HWP.  The HWP cancels out static 
systematic errors (such as those arising from instrumental effects). Here 
precision is limited by random error; additional integration time would 
improve precision further.

0 7.22.4 4.8
Baseline Length (m)

Figure 4. The on-sky differential visibilities from an observation

of Vega at 775 nm with the 18 hole mask, showing the effect
of different tiers of calibration. Ideally the visibility ratio should

be unity on all baselines, since the source is unresolved. Baseline

azimuth is plotted on the horizontal axis, while baseline length

is represented by colour. The precision is seen to increase with

successive layers of calibration, as discussed in the text. Data

were taken without Extreme-AO correction.

target). However non-polarimetric measurements were made

using the previously observed star Altair (discussed above)

as a PSF reference, although this was not an ideal calibrator

since it was observed at a different air-mass and time of the

night. Despite this, accurate complex visibility data were

recovered, constraining a uniform disk fit yielding a diame-

σ = 0.60 %

a) Annulus mask, all baselines. Errors from long baselines due to pupil 
misalignment dominate.

σ = 0.17 %

b) Only baselines shorter than 4 m (unaffected by pupil mislagniment).

0 7.22.4 4.8
Baseline Length (m)

Figure 5. The on-sky triple differential visibilities from Vega at

775 nm, with the annulus mask. Due to a misalignment between

the mask and pupil, many longer baselines have extremely low

visibilities, resulting in large errors (panel a). If these affected
baselines are eliminated by only plotting shorter baselines, excel-

lent precision (0.17 %) is observed (panel b).

ter of 32.2 ± 0.1 milliarcseconds. This is in close agreement

with the literature values tabulated in the CHARM2 catalog

(Richichi et al. 2005), which gives the uniform disk diameter

as 32.8 ± 4.1 milliarcseconds in V band.

The binary system η Pegasi was observed with the 18

hole mask at λ = 775 nm, again for a total integration time

of 54 s. Vega was again used as a calibrator (with the same

reservations). The binary was detected, and its separation

and position angle constrained. A Monte Carlo simulation

was used to determine the statistical confidence of the de-

tection, which was found to be better than 99.9%. The sepa-

ration was measured to be 48.9 ± 0.6mas. This is consistent

with the predicted separation based on the orbital param-

eters measured by Hummel et al. (1998) of 49.9mas. The

slight discrepancy is probably a result of imperfect knowl-

edge of the mapping between the sky and instrumental field

orientations, which is presently based only on values from

the optical system model. Further studies of several stellar

systems with known structure are planned to precisely cal-

ibrate both orientation and plate scale of VAMPIRES. The

contrast ratio was measured to be 3.55 ± 0.06 magnitudes,

again in good agreement with the value measured by Hum-

mel et al. (1998) of 3.61 ± 0.05 magnitudes.

5 SIMULATED DATA AND PERFORMANCE

PREDICTIONS

The differential Fourier visibilities (e.g. VHoriz/VVert) ob-

tained from VAMPIRES are not directly equivalent to the

differential intensities (or fractional polarisations) obtained

in techniques such as polarised differential imaging. Rather,

c� 2014 RAS, MNRAS 000, 1–14
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The binary system η Pegasi was observed with the 18

hole mask at λ = 775 nm, again for a total integration time

of 54 s. Vega was again used as a calibrator (with the same

reservations). The binary was detected, and its separation

and position angle constrained. A Monte Carlo simulation

was used to determine the statistical confidence of the de-

tection, which was found to be better than 99.9%. The sepa-

ration was measured to be 48.9 ± 0.6mas. This is consistent

with the predicted separation based on the orbital param-

eters measured by Hummel et al. (1998) of 49.9mas. The

slight discrepancy is probably a result of imperfect knowl-

edge of the mapping between the sky and instrumental field

orientations, which is presently based only on values from

the optical system model. Further studies of several stellar

systems with known structure are planned to precisely cal-

ibrate both orientation and plate scale of VAMPIRES. The

contrast ratio was measured to be 3.55 ± 0.06 magnitudes,

again in good agreement with the value measured by Hum-

mel et al. (1998) of 3.61 ± 0.05 magnitudes.
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Norris et al, 2015, MNRAS, 447, 2894

VAMPIRES



The self-calibration properties of closure 
phase make NRM “bullet-proof”

NRM onboard JWST in the NIRISS instrument.



The self-calibration properties of closure 
phase make NRM “bullet-proof”
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NRM onboard JWST in the NIRISS instrument.

Sivaramakrishnan et al,  Astro2010T, 40



credit: Pr. James Lloyd

A game changer: AO



closure-phase planet direct detection

Transition-disk host star in 
Taurus association (150 pc)

Companion detected @ 11 AU



Kraus & Ireland, 2012, ApJ, 745, 5

closure-phase planet direct detection

Transition-disk host star in 
Taurus association (150 pc)

Companion detected @ 11 AU
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uv-planeinterferogram
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If only one didn’t have to mask...

Telescopes apertures are redundant
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non-
redondant

full
aperture

Φj = Φ0j + 1 Δφ

Φj = Φ0j + Arg(Σej Δφi)

 Φj = Φ0j + 1/nj Σi Δφi

with AO, the phase can be linearized 



the 3 basic configurations



1. the easy non-redundant one

K = [1, 1, 1] verifies K . A = 0: the closure phase

Φ = Φ0 + A φ

ΦAC = ΦAC0 + (φA-φC)
ΦBC = ΦBC0 + (φB-φC)

ΦBA = ΦBA0 + (φB-φA)
0 1 -1
1 0 -1
-1 1 0

A = 



2. the first redundant case

Φ’ = Arg[exp i(Φ’0 + (φA-φB)) + exp i(Φ’0 + (φB-φC))]
ΦAC = ΦAC0 + (φA-φC)



2. the first redundant case

Φ = Φ0 + R-1 A φ

1 0 -1
1 0 -1

A = 1 0
0 ½

R-1 = 
Φ’ = Φ’0 + ½ (φA-φC)

ΦAC = ΦAC0 + (φA-φC)



2. the first redundant case

K = [1, -2] verifies K  R-1A = 0: the kernel-phase

Φ = Φ0 + R-1 A φ

1 0 -1
1 0 -1

A = 1 0
0 ½

R-1 = 
Φ’ = Φ’0 + ½ (φA-φC)

ΦAC = ΦAC0 + (φA-φC)



3. the real first case

1 0 0 0
0 ½ 0 0
0 0 1 0
0 0 0 ½

R-1 = 

1 0 0 -1
1 -1 1 -1
0 -1 1 0
1 1 -1 -1

A = 
1 -2 1 0
1 0 -1 -2K = 

You can extract self-calibrating 
observables from redundant apertures



This is of some consequence...

Perrin et al, 2006

FIRST:
- 36-beam combiner
- fiber remapping
- spatial filtering
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Φ Φ0= + φA’ ×

measured unknown unknownknown

For a complex array... use a computer



Kernel-phase

Find K so that KxA = 0, but how?

Use the Singular Value Decomposition (SVD) of A:

A = U Σ VT

Rows of K form a basis for the left null space of A
These new closure relations are called kernel-phases

Martinache, 2010, ApJ, 724, 464



Data analysis

http://code.google.com/p/pysco/

https://code.google.com/p/pysco/
https://code.google.com/p/pysco/


Data analysis

1. Build a instrument model => A
2. Find the Kernel of A: K

http://code.google.com/p/pysco/

https://code.google.com/p/pysco/
https://code.google.com/p/pysco/


Data analysis

1. Build a instrument model => A
2. Find the Kernel of A: K

PHARO P3K
α Oph (Ks)

3. Fourier Transform each image
4. Extract phase ϕ

http://code.google.com/p/pysco/

https://code.google.com/p/pysco/
https://code.google.com/p/pysco/


Data analysis

1. Build a instrument model => A
2. Find the Kernel of A: K

PHARO P3K
α Oph (Ks)

3. Fourier Transform each image
4. Extract phase ϕ

5. Multiply K ϕ: you are done!

Additionally:
- statistics
- model the data (e.g. binary)
- determine contrast limits

http://code.google.com/p/pysco/

https://code.google.com/p/pysco/
https://code.google.com/p/pysco/
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Martinache, 2010, ApJ, 724, 464

Data @ 1.9 μm (λ/D=150 mas)

A ~10:1 contrast companion to a nearby M-
dwarf identified with milli-arc-second 
precision at 0.5 λ/D

Separation: 140 mas
Contrast: 2.4:1

Pope et al, 2013, ApJ, 767, 110

Separation: 64 mas
Contrast: 2.2:1

Original survey:
Reid et al, 2006, 2008

Revisit ~ 80 brown dwarfs 
observed with HST/NIC1 in 
the F110W and F170M filters

- Doubled the fraction of 
known L-dwarf binary 
systems
- Improved astrometry x10

Grant HST-AR-12849.01-A



Kernel-phase on ground based AO

Pope et al, 2015, in prep



Kernel-phase on ground based AO

- Separation:       131.4 +/- 0.9 mas
- Position Angle:   86.0 +/- 0.2 deg
- Contrast:           19.7 +/- 0.4

Data, courtesy of S. Hinkley

Pope et al, 2015, in prep

Hinkley et al, 2011, ApJ, 726, 104
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Fig. 3.— The effect of photon-noise on Kernel-phase detections,

based on a simulated photon-limited image with 106 photons taken

with the unobstructed Keck telescope in the Lp filter. The de-

creased number of photons far from the PSF core means that

Kernel-phases sensitive to these spatial locations have smaller er-

rors, increasing the achievable contrast. This contrast increase

agonalized by the finite-dimensional spectral theorem:

ST ·D · S = CK = Ko ·C ·KT
o . (21)

The matrix S is then a unitary matrix which allows
us to construct a set of statistically independent kernel
phases based on a new kernel-phase operator KS :

θS = KS · Φ = S ·Ko · Φ. (22)

As an example of the utility of this approach, I have
simulated the effects of photon-noise on Kernel-phase
contrast limits, as shown in Figure 3. The contrast
standard deviation was estimated by first estimating the
standard deviation of each Kernel-phase (i.e. neglect-
ing covariances), forming a vector σθ, then computing
the contrast error using standard formulae for weighted
averages:

mθ =K ·mΦ (23)

σ2
c =1/Σ

m2
θ

σ2
θ

(24)

Here mΦ is the model phase divided by the contrast in
the high-conrast limit, e.g. for a 100:1 brightness ratio
companion, the phase would be approximated well by
0.01mΦ.

3.2. Closure-phase Correlations in Aperture-Masking
Interferometry

One of the more confusing aspects of aperture-masking
data analysis is knowing what to do with a linearly de-
pendent set of closure-phases. Simply choosing an arbi-
trary independent set of closure-phases for the purpose
of modelling is not possible without a full consideration

of the covariance matrix. If one considers only the sim-
plest forms of closure-phase errors, namely that due to
readout-noise, then the problem of modelling the covari-
ance matrix is not difficult. However, there are many
other kinds of errors that can cause correlations between
closure-phase errors.
Previous work has either gone to great lengths to diag-

onalize the measured covariance matrix of closure-phase
(e.g. Kraus et al. 2008) or has made an approximate scal-
ing of fitting errors to account for the closure-phase cor-
relations (e.g. Hinkley et al. 2011). The difficulty in any
approach based on real data is that the sample covari-
ance matrix must be modelled, and can not in general
be modelled from the data. The reason for this is that
where there are fewer data frames taken than indepen-
dent closure-phases, the sample covariance matrix is nec-
essarily singular.
These difficulties are all avoided if rather than consid-

ering closure-phases as a primary observable, the linear
combinations that make the kernel-phases are seen as the
primary observables. This has added benefits of being
able to extend the aperture-mask technique to consid-
ering baselines within each sub-aperture (consequently
extending the usable field of view) and using the same
language for all adaptive optics image analysis that is
independent of pupil-plane phase to first order.

4. CALIBRATION STRATEGIES

4.1. Nearest Neighbour Calibration

The simplest calibration technique is to subtract the
kernel-phases from a calibrator observed closest to the
target in time or space. A small extension to this tech-
nique (Evans et al. 2012, e.g.), is to use the average of sev-
eral calibrators observed nearby in time, rejecting outlier
calibrator observations. Outliers are most easily rejected
by looking for calibrators that when used to calibrate the
target, give spuriously large closure-phases. For Nc cal-
ibrators, this amounts to calibrator weightings {ak}Nc

k=1
where each ak is either 0 or 1/Nu, with Nu the number of
calibrators used. There are however, several weaknesses
to this technique:

1. With small numbers of calibrator observations, it is
difficult to avoid subjectivity in the choice to reject
particular calibrators.

2. For particularly noisy calibrator observations and
small systematic kernel phases, this process only
adds noise.

3. All calibrators are weighted evenly, when the op-
timal weighting of individual calibrators may even
be negative.

The third point may not be obvious, and is illustrated
in Figure 4. Whenever calibrators are all on one side
of the calibrator in some space, then optimal calibra-
tion may extrapolate past the position of the calibrators
to the target. This space may be real (such as zenith
distance which produces non-zero kernel phases due to
dispersion) or a one dimensional parameterisation of a
hidden variable describing a variable aberration. This
approach is similar to the potentially negative weight-
ing of astrometric reference stars in precision astrometry
(Lazorenko 2006).

Better than the kernel-phase...

Ireland, 2013, MNRAS, 433, 1718

... are the statistically 
independent kernel-phases!

θ = S.K.ϕ

Requires empirical covariance matrices
Part of a new file exchange standard?
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NRM Redundant

Redundant is good for high contrast

Simulations for Palomar 
Hale Telescope
PHARO full H-band filter

Strehl: 80 %
Δmag ~ 7 @ 1.5 λ/D
Calibrated closure- and 
kernel-phases

Better performance of 
redundant array over NRM 
for high contrast binary 
detection.



Initial assumptions revised

Linear approximation relies on small phase errors

Ongoing extensive simulations suggest kernel-phase 
on highly redundant aperture is surprisingly robust.

Latyshev, et al, 2015, in prep



 Φj = Φ0j + 1/nj Σi ΔφiΦj = Φ0j + Arg(Σej Δφi)

Original linearization for small instrumental phase:

Extensions are possible:
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Original linearization for small instrumental phase:

Extensions are possible:

Φj(λ)= Φ0j (λ)+ Arg(Σ exp(i2πδ/λ))

Arg (γj(λ1)× γ*j(λ2)) = ∆Φ0(λ1,λ2) + 1/n Σ [2πδj/Λ0]

alternate linearization scheme:

The same model holds for differential phase
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Original linearization for small instrumental phase:

Extensions are possible:

Φj(λ)= Φ0j (λ)+ Arg(Σ exp(i2πδ/λ))

Arg (γj(λ1)× γ*j(λ2)) = ∆Φ0(λ1,λ2) + 1/n Σ [2πδj/Λ0]

alternate linearization scheme:

The same model holds for differential phase

Work in
 progress



Single-telescope interferometry

?

Frantz Martinache, Laboratoire Lagrange, OCA
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Φ = ΦO + A.φ

Martinache, 2013, PASP, 125, 422

Martinache, 2010, ApJ, 724, 464

It is all about exploiting the properties of A



Φ = ΦO + A.φ

K ϕ = K ϕo + K A φ
K ϕ = K ϕo
(kernel-phase)

Martinache, 2013, PASP, 125, 422

Martinache, 2010, ApJ, 724, 464

φ = A-1 . (ϕ-ϕo)
(eigen-phase)

It is all about exploiting the properties of A


