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ABSTRACT

Aims. This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument
SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane
images acquired after an asymmetric mask is introduced in the pupil of the instrument.
Methods. This absolute sensor is used here in a closed-loop to compensate the non-common path errors that normally affects any
imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low order modes
corresponding to eight zernike modes (from focus to spherical).
Results. This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape
used as a zero-point by the high-order wavefront sensor. The paper precises the range of errors this wavefront sensing approach can
operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance.
Conclusions. Beyond this application, because of its low hardware impact, APF-WFS can easily be ported in a wide variety of
wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or
even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

Key words. instrumendation – adaptive-optics

1. Introduction

Several approaches to high contrast imaging have now clearly
demonstrated the power of focal-plane based image analysis.
Most prominently, non redundant aperture masking (NRM) in-
terferometry (Tuthill et al. 2000), relying on interferometric cal-
ibration tricks in the focal plane has led to high contrast detec-
tions (of the order of 1000:1) in a regime of angular separation
(typically between 0.5 and a few λ/D) that is still unmatched in
practice by techniques like coronagraphy (Kraus & Ireland 2012;
Sallum et al. 2015). As the generation of extreme adaptive op-
tics (XAO) instruments is coming on-line, more advanced wave-
front control schemes developed in the context of space-borne
coronagraphy like speckle nulling (Bordé & Traub 2006) or the
general framework of electric field conjugation (Give’On 2009)
are being ported on-sky (Martinache et al. 2014; Cady et al.
2013). Nevertheless, it remains remarkable that such a venera-
ble approach (the original masking idea by Fizeau was indeed
first tested in the 1870s), has remained relevant for well over a
century. This is really a tribute to the deep understanding that
interferometry has brought to the process of image formation.

It was more recently shown that the same self-calibrating
tricks used in masking interferometry, could in fact be ap-
plied to regular (i.e. unmasked) images, assuming AO-correction
with residual wavefront errors ≤ 1 radian RMS. The notion
of closure-phase (Jennison 1958), was indeed generalized and
shown to be a special case of a wider family of self-calibrating

observables coined kernel-phases (Martinache 2010), since they
form the basis for the null-space (or kernel) of a linear operator.
This generalization also opened the way for a focal-plane based
wavefront sensing approach, relying this time on the eigen-
phases of the same linear operator. While this problem is gen-
erally degenerate, one way to break this degeneracy proved to be
simple, and involved masking a small but non negligible fraction
of the pupil to introduce some level of asymmetry. The princi-
ples of this asymmetric pupil Fourier wavefront sensor (APF-
WFS) were described by Martinache (2013), and exploited by
Pope et al. (2014) to show how it could be used, for instance, to
cophase a segmented mirror. This paper further expands on the
possible applications of this wavefront sensor, as it is now im-
plemented as part of the SCExAO instrument (Jovanovic et al.
2015b), to compensate for a non-common path error unseen by
its upstream pyramid wavefront sensor.

2. Implementation of closed-loop wavefront control

2.1. Theoretical principle of APF-WFS

The APF-WFS method relies on the analysis of the Fourier prop-
erties of an AO-corrected image acquired after an asymmetric
hard-stop mask has been placed in the pupil. The SCExAO in-
strument is equiped with two such masks with the asymmetric
feature at distinct position angles, so that every part of the in-
strumental pupil can be accounted for. A rotation wheel, located
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Fig. 1. Images of the pupil (left) and the focal plane (right) acquired
by the SCExAO internal science camera. In addition to the four Subaru
telescope spiders, the thick arm visible on the left hand side of the pupil
introduces the asymmetry required for the wavefront sensing technique.
The thick dot visible in the bottom pupil quadrant is induced by a dead
actuator on the DM. In the focal plane, the presence of this asymmetry
results in an additional set of diffraction spikes along a direction per-
pendicular to that of the arm and a lumpier first diffraction ring.

in a plane conjugated with the pupil of the instrument (cf. Fig-
ure 3 of Jovanovic et al. (2015b)) makes it possible to move the
masks in and out of the beam as required by the observer.

Figure 1 shows an image of one of the asymmetric masks in
the pupil and the point spread function (PSF) it produces. Com-
bined with the use of the 2000-element deformable mirror (DM),
this simple alteration of the pupil is a powerful tool used to con-
trol the low-order aberrations of the instrument PSF. All images
featured in this paper were acquired using a H-band filter, cen-
tered on wavelength 1.65 µm and with an effective bandwidth
0.3 µm. The pixel scale of the internal science camera is 12.1
mas per pixel, which for this wavelength, provides a sampling
better than Nyquist.

It was shown that, in the low-aberration regime, typical of
what is left over after a first layer of AO correction is applied,
the phase Φ measured in the Fourier transform of an image I and
the instrumental pupil phase ϕ are linearly related. On the inter-
nal calibration source, unaffected by atmospheric turbulence, the
Strehl of images used in this study (such as during the calibra-
tion) is typically of the order of 80%. On-sky, since the results
featured here were acquired before the XAO loop is closed, the
Strehl is significantly lower, of the order of 50 %, which is a
sufficiently good starting point for approximation to be valid.

The target phase information, associated with the spatial
structures of the observed object Φ0, is also present in the Fourier
plane and simply adds to this instrumental Fourier phase. When
wavefront aberrations are low (below ∼ 1 radian), the classical
image-object convolution relation:

I = O ∗ PSF, (1)

can therefore be reformulated, if one works with the phase part
of the Fourier transform of this image as follows:

Φ = Φ0 + A × ϕ, (2)

where A is an operator that describes the way the pupil phase ϕ
propagates into the Fourier-plane.

When observing a point source, for which Φ0 = 0 (or if the
object is known), this relation can be inverted if one introduces
an asymmetry in the pupil (Martinache 2013). A direct focal
plane image, with only a small amount of additional diffraction
generated by the pupil asymmetry (cf. Figure 1), can therefore
serve as a wavefront sensor.

Fig. 2. Discrete model of the asymmetric pupil mask used for the cal-
ibration of the non-common path error in SCExAO. The pupil is dis-
cretized into a 292-element vector that projects onto a set of 675 equiv-
alent interferometric baselines (or uv points) in the Fourier domain. The
linear transformation that relates the wavefront to the phases measured
in the Fourier transform of an image is entirely determined from this
model. The presence of the asymmetry in the pupil ensures that an in-
verse relation for this phase transfer matrix exists.

To determine the structure of the operator A, one needs to
build a discrete representation of the instrument pupil - includ-
ing the asymmetric mask - following a regular grid with a step
such that the sampling density is reasonably representative of
the original pupil. One then looks at the way this discrete model
projects into equivalent interferometric baselines in the Fourier
plane. The model currently used on SCExAO is provided in Fig-
ure 2. It reduces the masked pupil to a 292-component vector
that projects onto a 675-element vector in the Fourier domain.
The phase transfer matrix A that establishes the mapping be-
tween the two spaces (Φ = A × ϕ) is calculated using the PYSCO
software, used for wavefront sensing as well as for kernel-phase
data analysis of diffraction limited images.

The presence of the asymmetry in the pupil ensures that an
inverse relation for this phase transfer matrix exists, and can be
used to infer the pupil phase vector ϕ from the Fourier phase Φ,
using the relation:

ϕ = A+ × Φ (3)

where A+ is a Moore-Penrose pseudoinverse of the phase trans-
fer matrix A, computed after rejecting modes associated to low
singular values. The geometry of the asymmetric feature of the
mask used for this work is not the result of an optimization and
simply follows the shape used in the concept paper of Mar-
tinache (2013). One would expect that a smaller asymmetry
should result in a lower sensitivy but a systematic study of the
sensitivity impact of the geometry of the asymmetry has yet to
be done. In the mean time, the curious reader should check the
experimental work of Pope et al. (2014), that shows that, in the
case of a segmented aperture, the technique remains effective,
even with a minimum of asymmetry (a single segment of the
aperture) and suddenly breaks, if no asymmetry is present at all,
validating the mathematical model this approach relies on.

2.2. Integrating a real system

The case featured in (Martinache 2013) was somewhat idealized,
working on monochromatic images, and with a perfect DM, able
to exactly generate the wavefront correction determined by the
analysis. To deploy this method on an actual closed-loop system
is not as direct and requires us to take into account the actual
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Fig. 3. The eight Zernike modes controlled by the SCExAO implemen-
tation of the APF-WFS. Sorted by Noll index, these modes are (from
left to right and top to bottom): Z4: focus, Z5: oblique astigmatism,
Z6: vertical astigmatism, Z7: horizontal coma, Z8: vertical coma, Z9:
vertical trefoil, Z10: oblique trefoil and Z11: primary spherical.

properties of the DM, such as the response curve of the actua-
tors, their influence functions, as well as a careful mapping of
these DM actuators on the instrument pupil (Blain 2013). While
possible, one such model is very prone to errors and its main-
tenance is demanding, because of small changes in the internal
instrument alignment induced by temperature drifts or after a
telescope slew.

AO systems in operation usually choose to rely on a more
pragmatic approach that encapsulates this kind of model in a
transparent manner: individual DM actuators or groups of actua-
tors (pre-defined modes) are sequentially excited and the system
response is recorded and assembled in a matrix. Filtering of the
noisy modes before inversion (using SVD or similar procedures)
leads to the obtention of a control matrix that can be used to di-
rectly multiply an input vector made of the wavefront sensor raw
input data.

This pragmatic approach is the one that was retained for
this implementation of APF-WFS. The control software was
designed to sense and control eight low-order Zernike modes
(Zernike 1934) that correspond to classical optical aberrations:
focus, two terms of coma, astigmatism and trefoil, and spherical
aberration. Figure 3 shows how these modes map on the discrete
pupil model used to describe the instrument.

2.3. Properties of the phase transfer model

To better appreciate the impact of the phase transfer model, one
can look at the effect of the projection in the Fourier plane and
then back in the pupil plane, using the linear relations of Eq. 2
and Eq. 3. The original phase ϕ becomes:

ϕ′ = A+ × A × ϕ. (4)

Depending on the number of modes kept in the determina-
tion of the pseudo-inverse A+ of the phase-tranfer matrix, the
reconstruction goes from perfect (if all modes are preserved) to
very partial (if few modes are preserved). The modes discarded
correspond to low singular values, which for a given level of
signal-to-noise in actual data, would result in amplified noise.
On SCExAO, for the control of these eight low-order modes, 150
out of the 291 available modes are maintained in the computation
of the pseudo inverse. Under these conditions (cf. Figure 4), the
reconstruction appears satisfactory, and confirms that the tech-

Fig. 4. The eight Zernike modes reconstructed by the linear model when
150 out of the 291 modes are kept in the computation of the pseudo-
inverse of the phase transfer matrix A+.

Fig. 5. Calibration data for the APF-WFS acquired by the SCExAO
science camera. Top left: the reference PSF, acquired with the system
in its starting state. From left to right and top to bottom: the PSF after
the corresponding Zernike mode has been applied. A non-linear scale is
used to better show the impact of a 30 nm RMS DM modulation.

nique can indeed be used to control low-order modes, assuming
that the linear model holds (and that aberrations are small).

2.4. Calibration

The calibration procedure for this implementation of the APF-
WFS follows the linear control framework. After the asymmetric
mask has been inserted, one acquires one image labeled as refer-
ence, followed by a sequence of images acquired after a Zernike
mode of appropriate amplitude has been applied to the DM. Fig-
ure 4 features one such calibration data-set, acquired with the fo-
cal camera of SCExAO on its internal calibration source (super-
continuum laser) using a standard H-band filter, for a 30 nm
RMS deformation of the DM. Note that this displacement ac-
tually translates into a 60 nm wavefront amplitude modulation
(the DM being a reflective system).

Each image is recentered and windowed by a super-gaussian
function that filters out high-spatial frequencies, and reduces the
impact of detector readout noise. It is then Fourier-transformed
and the Fourier-phase is extracted according to the sampling
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Fig. 6. Experimentally recovered Zernike modes. Save for the spherical
aberration, one will observe that the modes extracted from the analy-
sis of the images of Figure 5 do reproduce the features expected after
looking at the theoretical reconstructed modes presented in Figure 4.

model featured in the right hand side of Figure 2 to populate
a vector Ψ.

To each Zernike mode, one can therefore associate a Fourier-
phase vector Φi after subtracting the phase Ψre f measured in the
initial or reference state:

Φi = Ψi − Ψre f . (5)

The wavefront associated to this Fourier-phase signature can
be recovered using the pseudo-inverse A+ previously computed
and applying Eq. 3. This wavefront in radians can in turn be
converted into a DM displacement map (in microns) after be-
ing multiplied by the proper λ/4π scaling factor; where λ is the
wavelength expressed in microns and 4π contains the ×2 factor
due to the reflection. Figure 6 features an example of experimen-
tally recovered modes. One will observe that the reconstruction
from the Fourier analysis of actual images appears visually satis-
factory. Differences in the reconstruction with the modes plotted
in Figure 4 can be attributed to imperfections of the pupil dis-
cretization model (cf. Figure 4 of Martinache (2013)), combined
to practical subtleties like the fact that the dynamical range on
the camera is limited and that classical noises: photon and read-
out, do apply.

To complete this description of the general aspect of the
modes with a quantitative estimate of the quality of the recon-
struction, Figure 7 directly compares the experimental recon-
struction E to the theoretical Zernike modulation T , by plotting
the local deduced DM displacement against its predicted value.
One can confirm that all modes are not equally reproduced by the
analysis, and that for this experimental setup, the sensor is most
sensitive to astigmatism (for which the correlation coefficient is
the strongest) and not particularly suited to the sensing of spher-
ical aberration. Table 1 accompanies this figure and provides the
value of the Pearson product moment correlation coefficient for
all modes:

r =
cov(E,T )
σEσT

, (6)

Table 1 also shows that with a correlation coefficient ∼0.5,
spherical aberration is significantly less well reconstructed than
the other modes that exhibit correlation coefficient >0.8. The
specificity of the response to spherical aberration is however not
an intrinsic limit of the sensing approach and can in fact sim-
ply be explained by the 2D geometry of this aberration and how

Zernike Mode quality
Z4 (focus) 0.855
Z5 (astigmatism 1) 0.949
Z6 (astigmatism 2) 0.925
Z7 (coma 1) 0.820
Z8 (coma 2) 0.862
Z9 (trefoil 1) 0.827
Z10 (trefoil 2) 0.854
Z11 (spherical) 0.522

Table 1. Pearson Product moment correlation coefficient of the experi-
mentally reconstructed mode E with their theoretical counterpart T .

it fits within the footprint of the Subaru Telescope and its large
(∼30% central obstruction). By looking, for instance at Figure
3, one will observe that the donut shape of the spherical aber-
ration results in a pretty uniform distribution of the phase, that
only varies near the inner and outer edges of the pupil. The basis
of Zernike polynomials is defined for a complete circular aper-
ture: quoted amplitudes correspond to a given wavefront RMS
over the entire circular aperture. For the spherical aberration, the
presence of the central obstruction naturally filters a lot of the
effect of the spherical aberration. This is further confirmed af-
ter a close examination of scatter plots of Figure 7: whereas all
Zernike stimuli (along the horizontal axis of the plots) have the
same amplitude, one will observe that the resulting range of lo-
cal DM displacement (corresponding to the horizontal spread of
the data points) is appreciably shorter for the spherical aberration
than it is for the other modes.

These experimentally obtained pupil-phase modes ϕi are
stored in a 8 × 291 matrix Z, refered to as the response matrix.
In practice, unless the DM registration were to change in a dra-
matic manner, the calibration is quite robust: a response matrix
acquired using the internal calibration source and can be very
well be used during on-sky observations, if the filter remains un-
changed and if the change of exposure time does not result in a
saturated PSF core (cf. the discussion in Section 4).

On SCExAO, the acquisition of this response matrix only
takes a few seconds, so it can easily be repeated if needed after
acquisition of a new target. In practice, it seems a response ma-
trix acquired on the stable internal calibration source provides
the best results.

2.5. Closed-loop operation

Just like during the calibration, focal-plane images acquired
on-sky with the asymmetric mask are dark-subtracted, recen-
tered and windowed by a super-gaussian function before be-
ing Fourier-transformed. After extraction of the Fourier-phase,
a wavefront is produced and directly projected onto the basis
of modes (without subtracting the reference), to find the coeffi-
cients associated to all eight Zernike components. If the current
wavefront sensor signal is ϕ, the instant Zernike coefficients (α)
are the solution of Z · α = ϕ. The least square solution (α̂i)11

i=4 of
this system is the solution to:

ZTZ · α̂ = ZTϕ (7)

The solution α̂ to this well behaved system of equations is
used as an input for a control loop algorithm. The loop in oper-
ation on SCExAO implements a simple proportional controller,
with a gain common to all Zernike modes with value contained
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Fig. 7. Comparative quality of the modal reconstruction: for each mode, the local value of the DM displacement (in nm) for the theoretical Zernike
mode of predefined amplitude (here 30 nm, labeled as the ’excitation’) is plotted against its experimental measurement.

Fig. 8. Illustration of the impact of the APF-WFS. Left: 0.5 ms PSF
acquired by SCExAO’s internal science camera after the upstream AO
loop has been closed. Right: identical exposure acquired 30 seconds af-
ter the APF-WFS loop has been closed. Despite residual imperfections
due to dynamic changes, the PSF quality is obviously improved.

between 0.05 and 0.3, depending on the overall stability of the
wavefront provided by the upstream AO. When looking at the
internal calibration source, one can reliably use the highest gain.
Since it is for now only used for a very short time (typically
∼ 15 seconds), at the time of target acquisition to flatten the
static component of the wavefront, the current implementation
of the algorithm is proving satisfactory. Once the non-common
path error is accounted for, the asymmetric mask is taken out of
the optical path and the system is ready for observing using the
full pupil of the telescope.

3. Performance

3.1. On-sky demonstration

The technique was successfully deployed and proved to be ef-
fective at reducing the non-common path error during on-sky ob-
servations behind Subaru Telescope’s facility AO system AO188
(Minowa et al. 2010). Figure 8 illustrates the impact of the ap-
proach, with two 500 µs exposures of the target (Altair) acquired
by SCExAO’s internal science camera on UT 2015-10-30.

The first image shows the PSF after the AO188 loop has been
closed on the target: although it features a well defined diffrac-
tion core, the PSF clearly exhibits some static aberrations that
can be attributed to the non-common path error between AO188
and SCExAO’s focal plane. The second image shows the PSF
about 30 seconds after the APF-WFS loop has been closed. The
gain in Strehl is low (of the order of 5 %), but the PSF is im-
proved at where it matters most for high contrast imaging and
no longer features any obvious low-order aberration signature.
Residual inhomogeneity of the first diffraction ring can be at-
tributed to a combination of instantaneous AO residuals com-
bined with the effect of the asymmetric arm.

SCExAO’s internal science detector is a fast but low-
sensitivity detector that can acquire images at up to 170 Hz full-
frame rate whose specifications are given in (Jovanovic et al.
2015b). APF-WFS seems to exhibit sufficient sensitivity to be
used in a fast closed-loop that could very well track low-order
aberrations with frequencies up to a tenth of the camera frame
rate.

At the moment, the goal of the loop is to calibrate the quasi-
static non-common path error. The control software keeps a
rolling average of the 20 last wavefront estimations, and corrects
for the average of these estimations at each iteration, thus filter-
ing vibration-induced fast varying component. Combined to the
acquisition, the (non-optimized) computation of the wavefront
makes the loop run at a frequency of ∼8 Hz.

3.2. Cross-talk

Zernike polynomials (Zernike 1934) form a convenient basis to
describe a wavefront within a circular aperture: designed to form
an orthonormal basis, the first terms of the series happen to cor-
respond to classical monochromatic optical aberrations like fo-
cus, astigmatism or coma. As previously seen, the presence of
a central obstruction in the pupil makes this basis no longer
perferctly orthogonal. Substitutes have been proposed (Maha-
jan 1981) in order to accomodate for the presence of this rather
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Fig. 9. Control modes inner product matrices caracterizing the orthog-
onality properties of the implementation of the APF-WFS described in
this paper on SCExAO. From left to right: 1. the mostly perfectly diag-
onal case of the Zernike polynomials basis, 2. the seemingly identical
inner product matrix for the theoretical modes after reconstrucion by
the linear model and filtering by the SVD, and 3. the inner product ma-
trix for the experimentally reconstructed modes. The overall diagonal
allure of the latter characterizes the sensor as suited to the control of the
low order Zernike modes. Numerical values for the experimental inner
products are provided in Table 2.

common feature of telescopes, but the asymmetric arm required
for the wavefront sensing (cf. Section 1) would also require an
adaptation.

Instead of trying to specify a new orthogonal basis perfectly
adapted to our case, we have judged more appropriate to stick to
the conventional Zernike basis, and verify a posteriori how or-
thogonal the different modes actually are. Figure 9 does this by
plotting the 8×8 matrix of inner products between the eight con-
trol modes (ZTZ) for three cases: the input Zernike polynomials
(given in Figure 3), the theoretical reconstruction of the linear
model with 150 out of the 291 eigen modes kept in the phase
transfer matrix inversion (given in Figure 4) and the experimen-
tally acquired modes (given in Figure 6).

An orthogonal basis will result in a perfectly diagonal inner-
product matrix whereas non-orthogonality would become mani-
fest with strong non-diagonal components.

One can therefore observe, looking at the left hand side panel
of Figure 9, that the Zernike modes do form a satisfactory, nearly
orthonormal basis, with a mostly uniform diagonal and a limited
amount of cross terms standing out (except for the case of the
16% cross-correlation between focus (Z4) and spherical (Z11).
For the sake of consistency with the rest of the data presented in
the paper, Figure 9 also shows in its central panel, that the modes
reconstructed by the linear model reproduce most of these fea-
tures, although one can observe ∼20% degradation of the rela-
tive strength of the focus signal. What we observe here is the
effect of the filtering of low singular values in the construction
of the pseudo-inverse A+ as used in Equation 4. With 150 out of
the possible 291 modes kept in the construction of the pseudo-
inverse, the inner product matrix for the experimentally recov-
ered modes is also mostly diagonal.

Table 2 provides the numerical values for the experimental
inner products, also graphically represented in the right hand
side panel of Figure 9. Although some of the cross terms are
non-neglibible, the terms along the diagonal still dominate, indi-
cating that a control loop relying on this calibration dataset will
reliably converge toward a state that will cancel the non-common
path aberration.

3.3. Range of linear response

As reminded in Section 2.1, the APF-WFS relies on the assump-
tion that an upstream AO correction is provided. The system

Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11
Z4 0.46 -0.09 0.12 -0.10 -0.04 -0.09 -0.03 0.06
Z5 -0.09 0.87 0.09 0.09 -0.08 -0.03 0.19 -0.03
Z6 0.12 0.09 1.00 -0.04 0.01 -0.25 -0.16 0.05
Z7 -0.10 0.09 -0.04 0.57 -0.04 0.05 0.03 -0.02
Z8 -0.04 -0.08 0.01 -0.04 0.75 -0.03 -0.07 -0.07
Z9 -0.09 -0.03 -0.25 0.05 -0.03 0.65 -0.03 -0.02
Z10 -0.03 0.19 -0.16 0.03 -0.07 -0.03 0.61 0.00
Z11 0.06 -0.03 0.05 -0.02 -0.07 -0.02 0.00 0.11

Table 2. Numerical values for the experimental modes inner-product

Fig. 10. Experimental response of the APF-WFS obtained on the
SCExAO internal (super-continuum) source in the H-band. Each plot
features (on the vertical axis) the reponse of the sensor to a Zernike
mode of RMS amplitude that varies over a ±150 nm range (units for
both axis are in nm). Nearly linear over the entire range for most modes,
the sensor only exhibits a significant non-linear behavior for the coma
2, and the two trefoil modes when the DM Zernike amplitude is larger
than 80-100 nm. Note that this limit is on the DM surface, which must
be doubled if refering to aberrations on the wavefront.

is expected to deal with with small residual wavefront errors,
and the calibration procedure described above, typically employs
DM modulation amplitudes of ∼30-50 nm. To determine the
amount of aberration the technique is able to deal with, we per-
formed a systematic exploration of the response of the sensor to
stimuli of variable amplitude. The instantaneous response of the
sensor is projected onto the basis of modes following the proce-
dure outlined in Section 2.5. Figure 10 summarizes the result of
this systematic exploration of the response of the sensor, over a
±150 nm range of DM modulation amplitude.

Although not perfectly linear, for Z4 (focus), Z5, Z6 (astig-
matism), Z7 (coma 1) and Z11 (spherical), the response remains
monotonic over the entire ±150 nm range. For Z8 (coma 2), Z9
and Z10 (trefoil 1 and 2), the response is only monotonic over
the ±80 nm modulation range beyond which the sensor cannot
be used reliably.

The drastic difference of response between Z7 and Z8 which
correspond to the same type of aberration (ie. coma), can be ex-
plained by the azimuth of the asymmetric arm in the pupil stop,
oriented such that it masks out almost entirely one of the two an-
tisymmetric bumps that are characteristic of this aberration (cf.
for instance the top-left most panel of Figure 3).

A strong non-linearity of the response is experienced when
the pupil-phase peak-to-valley (P2V) wavefront becomes larger
than 2π (which results in a phase wrap). The presence of the
asymmetric stop at its current azimuth essentially divides the
P2V by a factor of two in the case of Z7 (ie. coma 1), hence
making the sensor able to handle twice as much coma along the
horizontal axis than along the vertical axis. Note that the same
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Fig. 11. Comparison of the uv-phase signature of the same amount of
aberration (here coma) for a non-saturated PSF (on the left) and a sat-
urated one (on the right). The saturation primarily affects the higher
spatial frequencies of the image, corresponding to the outermost parts
of the Fourier plane. In the inner region of the saturated case (within the
highlighted smaller circle), the Fourier-phase signature of the aberration
is similar to its non-saturated counterpart.

effect (to a lesser extent) can also be observed when comparing
Z9 and Z10.

We can nevertheless conclude that under normal operating
conditions, in the H-band, the sensor is able to operate linearly
as long as the RMS error on either mode is less than 200 nm on
the wavefront.

4. Wavefront sensing from a saturated PSF

A well AO-corrected PSF is a highly contrasted object. The
proper simultaneous sampling of the core of the PSF and its
diffraction rings therefore requires a detector with a large dy-
namical range, that is rarely compatible with a fast readout. The
SCExAO internal science camera has an effective dynamical
range of ∼10000 counts, so that in practice, one has to choose
an exposure time that either gives access to a non-saturated PSF
core (the normal operating mode of the wavefront sensing ap-
proach described thus far) or over-expose the PSF core to better
see the fainter diffraction structures that surround it.

In its general form, the linear model of Eq. 2 only holds when
working on non-saturated images that otherwise result in a non-
translation invariant PSF. Pixels that are saturated by the bright
core of the PSF can be treated as zeros, so that the effect of sat-
uration can be modeled as a multiplication by a top-hat function
that cuts off anything higher than a level imposed by the charac-
teristics of the detector. This multiplication in the image space,
results in a convolution by an Airy-like function whose charac-
teristic size is inversely proportional to the size of the saturated
part of the PSF.

The effect of this convolution is expected to be most promi-
nent in the outermost region of the Fourier plane where the phase
will experience a change of sign. Figure 11 illustrates this effect
by comparing the Fourier-phase signature of a specific aberra-
tion for a non-saturated PSF to that of a mildly saturated one.
One can observe that while the outermost part of the Fourier-
phase is obviously affected by the saturation, the innermost part
of the PSF (highlighted by the smaller dashed circle) does re-
semble the original non-saturated case.

Figure 12 further makes this obvious by representing in a
1D plot the values of the Fourier-phase of the saturated image
against the Fourier-phase of the non-saturated image. Whereas
considered as a whole, the Fourier-phase of the saturated data

Fig. 12. 1D comparison of the phase (in radians) extracted from the
Fourier plane featured in Figure 11, in the non-saturated case (along the
horizontal axis) and in the saturated case (along the vertical axis). The
blue points include the data at all spatial frequencies while the red ones
correspond to the inner part of the Fourier plane only. The strong cor-
relation observed in the latter case suggests that some of the wavefront
information can be recovered from the analysis of mildly saturated data.

appears as non-usable (the blue points are widely scattered), the
inner part of this same saturated data set is strongly correlated
(the red points) with the non-saturated data, suggesting that some
of the wavefront information can be recovered in the saturated
case, assuming that one filters out the information coming from
the largest baselines.

To account for this filtering, the Fourier-phase model can be
modified, and the parts of the phase transfer matrix A can be dis-
carded along with the parts of the Fourier-phase vector Φ that
are filtered out. The model we have tested only preserves base-
lines that are 70% or less than the longest baseline in the model,
which corresponds to the area inscribed within the inner circle
plotted in the right panel of Figure 11. Out of the 675 original
distinct uv-phase samples, 330 remain with this configuration,
which is still of the order of the number of modes one needs in
order to recover the full theoretical pupil phase information (291
modes).

For the computation of the pseudo-inverse A+ of this new
system, 50 modes are kept. With less constraints from the uv-
plane, the Zernike modes are less well reconstructed, but are
nevertheless recognizable, as shown in Figure 13.

The calibration procedure introduced in Section 2.4 can be
repeated with this new model after which, the APF-WFS is ef-
fectively able to operate in closed-loop from the analysis of sat-
urated data, albeit with lower performance. To see how this sat-
uration affects the sensor, the study presented in Section 3.3 was
repeated in this new operating mode. The outcome of this study
is presented in Figure 14.

In this peculiar saturated mode, the sensor is able to operate
linearly over a limited range of aberrations. Like previously ob-
served (cf. Section 3.3), it is the modes whose geometry feature
localized bumps like coma of trefoil that first limit the range of
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Fig. 13. Experimentally recovered Zernike modes after discarding the
phase associated to the longest baselines, affected by saturation effects.
This new series of experimental modes should be compared to the non-
saturated case presented in Figure 6.

Fig. 14. Study of the response of the sensor in the saturated case to
Zernike modes of varying amplitude. This series is to be compared to
the case presented in Figure 10 in the non-saturated case.

aberration that APF-WFS can account for. APF-WFS can nev-
ertheless operate on images whose core is saturated, over a 100
nm wavefront RMS range that is roughly one half of what it can
achieve in the non-saturated operating regime: the general APF-
WFS approach is more robust than first expected and can be used
despite less than ideal conditions.

5. Conclusion

Following on the conceptual study proposed by Martinache
(2013), this paper described the implementation of the asymmet-
ric pupil Fourier wavefront sensor as one of the wavefront con-
trol loops of the SCExAO instrument. This approach has proven
able to repeatedly account for the non-common path error that
affects the instrument after a new telescope pointing and provide
an updated zero-point for the upstream pyramid wavefront sen-
sor currently implemented inside SCExAO.

A surprisingly simple asymmetric hard stop mask introduced
in the pupil of a diffraction limited imaging instrument is there-
fore proving to be a powerful diagnostic tool for the control of
the non-common path aberrations. The reported capture range
of the technique is currently limited to a fraction of a wave
(RMS ∼ λ/8). A combination of filters of decreasing wave-
lengths would provide a direct way to tolerate a cruder starting
point. We are currently exploring the potential of an updated al-
gorithm that simultaneously exploits the information sampled at
multiple wavelengths to extend the capture range even more, this
time within the coherence length. Note that other approaches us-
ing combinations of non-redundant aperture masks (Cheetham

et al. 2012, 2014) also rely on this idea to extend their capture
range.

The asymmetry results in slight cosmetic degradations of the
PSF. While this does impact a coronagraphic instrument, it can
be tolerated in a general purpose AO-corrected imaging instru-
ment. A very interesting feature of this image-based wavefront
sensing approach is that if multiple sources are available in a
given field, the APF-WFS algorithm can be used on all sources
simultaneously. Depending on the complexity of the field, the
same asymmetric mask, combined with the analysis of multi-
ple sources in one image can be used for multi-reference wave-
front sensing, opening the way to a full 3D reconstruction of
the wavefront from the analysis of a single focal plane image.
This very property can also be put to use on artificially intro-
duced incoherent replicas of an on-axis PSF, of tunable inten-
sity as described by Jovanovic et al. (2015a), thus making the
use of the technique compatible with that of a coronograph that
otherwise destroys the interferometric reference required for a
sensible Fourier-analysis of the image as described in this work.

The use of this wavefront control technique extends well be-
yond the control of low-order modes on SCExAO: this paper
provides experimental evidence that the technique is actually ef-
fective where the theory predicts it should be. In an exposure that
simultaneously features an unsaturated PSF core and the diffrac-
tion features at large separation with sufficient SNR, APF-WFS
can be used to control an arbitrary number of modes, as was
shown in the concept paper. APF-WFS can in fact easily be ap-
plied in a wide variety of wavefront sensing contexts, for ground-
as well space-borne telescopes, and with a pupil that can be con-
tinuous, segmented or even sparse. APF-WFS is powerful be-
cause it measures the wavefront where it really matters, at the
level of the science detector. Given its low impact on the instru-
ment hardware, it is an option that should be given some con-
sideration, as part of any high contrast imaging instrument with
wavefront control capability.
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