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ABSTRACT
In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high
contrast imaging system. These aberrations are either imposed by a turbulent medium such as
the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased
subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wave-
front sensor and a deformable mirror, are employed to address this problem. Nevertheless,
the non-common-path between the wavefront sensor and the science camera leads to persis-
tent quasi-static speckles that are difficult to calibrate and which impose a floor on the image
contrast. In this paper we present the first experimental demonstration of a novel wavefront
sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera
itself to detect high order wavefront errors from the speckle pattern produced. We apply this to
correct errors imposed on a deformable microelectromechanical (MEMS) segmented mirror
in a closed loop, restoring a high quality point spread function (PSF) and residual wavefront
errors of order ∼ 10 nm using 1600 nm light, from a starting point of ∼ 300 nm in piston and
∼ 0.3 mrad in tip-tilt. We recommend this as a method for measuring the non-common-path
error in AO-equipped ground based telescopes, as well as as an approach to phasing diffi-
cult segmented mirrors such as on the James Webb Space Telescope primary and as a future
direction for extreme adaptive optics.

Key words: techniques: interferometric — techniques: image processing — techniques:
adaptive optics

1 INTRODUCTION

A major goal in present-day astronomy is the direct detection of
planets and other faint companions to stars, a task which simul-
taneously requires high contrast and high resolution. This task is
principally limited by the diffraction of light from the parent star,
due to static aberrations in the telescope optics, quasi-static errors
that vary with telescope pointing and environmental conditions, and
the dynamic effects of atmospheric turbulence.

Of these, by far the most severe difficulty is with atmospheric
turbulence, or ‘seeing’. It has been apparent at least since Newton’s
times that atmospheric turbulence limits the resolution and sensi-
tivity of astronomical observations. This problem can be substan-
tially overcome by the use of adaptive optics (AO), first proposed
by Babcock (1953). In this approach, a wavefront sensor is paired

? E-mail: benjamin.pope@astro.ox.ac.uk

with a deformable mirror (DM) in a feedback loop to measure and
correct for distortions in the phase of the incoming light (Davies &
Kasper 2012).

The application of AO is not strictly limited to astronomy,
however. In optical microscopy it is also the case that the speci-
men under study introduces aberrations into the optical path that
limit the ability of a microscope to resolve detail deep below the
surface of an otherwise transparent specimen (Booth 2007).

There is a third, related, problem in optics for which a wave-
front sensor is necessary. The primary mirrors of large telescope
are constructed out of segments. Current examples include the two
10-meter W. M. Keck Telescopes and the James Webb Space Tele-
scope. Future Extremely Large Telescopes (ELTS) will follow this
design: the primary mirrors of the European ELT, the Thirty Meter
Telescope (TMT) and the Giant Magellan Telescope (TMT) are all
to be made of multiple elements. Discontinuities in the pupil and
sharp segment edges however come with difficulties that are not
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well addressed by traditional wavefront sensors whose reconstruc-
tors assume continuity of the wavefront. It is therefore of prime im-
portance to ensure that all segments are positioned correctly relative
to one another without introducing significant wavefront errors.

Hitherto the most common technology for wavefront sensing
has been the Shack-Hartmann wavefront sensor. It uses an array
of lenslets placed in a re-imaged pupil, such that the position off-
set of the spot produced by each lenslet encodes information about
the local slope of the wavefront. This has been regularly applied to
general wavefront sensing applications since Lane & Tallon (1992)
and is now ubiquitous in astronomical AO (Davies & Kasper 2012).
However as noted by Guyon (2005), the Shack-Hartmann technol-
ogy is intrinsically vulnerable to photon noise and requires a large
fraction of the incoming light be diverted for the sole purpose of
wavefront sensing. This is a significant drawback in the regime of
faint targets or high-contrast studies.

Other technologies such as the pyramid wavefront sensor
(Ragazzoni 1996), curvature wavefront sensor (Roddier 1988) and
phase contrast method (Zernike 1934) are possible. They however
also suffer from similar drawbacks.

All aforementioned approaches suffer from the non-common-
path (NCP) error problem, as aberrations occurring downstream
from the wavefront sensor are not directly measured. These resid-
ual errors give rise to quasi-static speckles that impose a detection
floor in high-contrast imaging, such as with the P1640 integral field
spectrograph (Hinkley et al. 2008; Crepp et al. 2011; Hinkley et al.
2011).

Solutions to this problem require some form of phase retrieval
using the science camera itself. Possible implementations fall into
two categories: the first relies on an active differential process. Di-
versity in the point spread function (PSF) is introduced by an active
element to distinguish coherent, variable diffraction features from
incoherent, fixed celestial objects. The other is a passive differential
process. One standard approach representative of this category is
angular differential imaging (ADI) (Marois et al. 2006; Lafrenière
et al. 2007), where the pupil is allowed to rotate with respect to the
sky (as in, for instance, an alt-azimuth mounted telescope). If this
rotation occurs on a timescale shorter than that of the variation of
the quasi-static speckles, it is possible to distinguish faint compan-
ions from speckles in the PSF, in post-processing.

To measure the NCP-error from the science detector, the stan-
dard option is the phase diversity technique. Multiple images taken
in and out of focus, make it possible to determine uniquely the
static aberrations across the entire wavefront (Kendrick et al. 1994;
Campbell et al. 2004; Sauvage et al. 2012). This NCP-error esti-
mate can be used to offset the wavefront sensor zero-position for
close-loop operation.

The DM itself can be used to introduce the known phase per-
turbation in order to calibrate or suppress speckles. The large num-
ber of degrees of freedom offered by a DM leads to variety of
control algorithms: from random perturbations of the DM while
monitoring a metric function of the PSF (Ren et al. 2012); iter-
ative speckle nulling loop compatible with coronagraphic mode
(Martinache et al. 2012); to a more complete determination of the
wavefront with a finite number of DM modulations (Keller et al.
2012). A comparable method compatible with a coronagraphic
imaging mode should rely on the electric field conjugation frame-
work (Give’on et al. 2007; Thomas et al. 2010; Give’On et al.
2011), to construct a complex transfer matrix for the real and imag-
inary parts of the electric field between pupil and focal planes, for
direct speckle nulling within a finite region of the field of view.
These approaches all rely on sequential motions of the DM to

achieve the required diversity, which is necessarily time-consuming
and therefore a challenge for busy observing schedules.

The alternative to this is interferometric calibration, as is al-
ready done with sparse aperture masking with AO (Tuthill et al.
2006). At the cost of Fourier coverage and throughput, it is possi-
ble to extract closure phases which are self-calibrating with respect
to phase errors in the pupil. Because they are measured from the
science camera image, closure-phase are robust against residual
aberrations, NCP-error otherwise. The idea of closure phases can
be generalized to ‘kernel phases’ for arbitrary pupils in the limit of
a well-corrected wavefront (Martinache 2010). This approach has
proven fruitful in detecting faint companions to brown dwarfs in the
‘super resolution’ regime, beyond the formal diffraction limit, and
with the calibration schemes proposed by Ireland (2013) can com-
plement ADI and similar techniques at small angular separations.
Kernel-phase uses a matrix pseudoinverse approach and therefore
has formal features in common with electric field conjugation. The
response matrix is however not empirically determined, and relies
instead on a simple model of the pupil geometry, while assuming
that amplitude errors are negligible. This has the advantage of not
requiring calibration of the same extent or duration.

In this paper we present the first laboratory demonstration of
the asymmetric pupil Fourier wavefront sensor proposed by Marti-
nache (2013). This emerges naturally as a dual to the kernel phase
image analysis method put forward by Martinache (2010). By con-
sidering the problem of PSF formation from an interferometric per-
spective, it is possible to recover with post-processing a map of the
wavefront giving rise to the PSF of any inversion-asymmetric pupil
subject to weak aberrations. This incurs a modest hardware cost of
a minor asymmetric obscuration of the pupil. For segmented mir-
rors, this may be achieved by segment tilting or by a judicious ar-
rangement of a mask or spiders. The advantage here is that this is in
principle a single-step, requiring no phase diversity or modulation.

Using simulations, Martinache (2013) shows that the method
is particularly adapted to the determination (and therefore correc-
tion) of the NCP-error in an AO system. Here, we provide experi-
mental results showing that it is equally suited to the phasing of a
segmented mirror.

2 PHASE TRANSFER ALGORITHM

2.1 Theory

Here we will summarize and explain the theory of the wavefront
sensing approach proposed by Martinache (2013). In the following
discussion it will be important to distinguish between three planes
in the optical path: the pupil plane, defined at the telescope aper-
ture; the image plane, as recorded (for instance) by a camera; and
the Fourier plane, the Fourier transform of the image. The image
of a point source (or equivalently the point spread function of the
imaging system) is given by the squared Fourier transform of the
electric field in the pupil, and therefore the complex visibilities in
the Fourier plane are given by the field’s autocorrelation. For arbi-
trary aberrations, it is not in general possible to uniquely map from
information in the image plane only to the wavefront in the pupil
plane, because the autocorrelation of an arbitrary function is not
uniquely invertible.

If the aberrations are small (ϕ . 1 rad), it is however pos-
sible to treat this mapping as a linear operation. Using a discrete
model of the pupil it is then straightforward to compute the phase
transfer matrix associated with this operator. In this paper, will con-
sider models of the hexagonal segmented MEMS mirror used for
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Figure 1. A model of the Dragonfly segmented mirror. Blue points represent
points tilted on-axis; red points, an equivalent sampling to illustrate mirrors
tilted away from the optical axis.

the Dragonfly pupil remapping interferometer (Kotani et al. 2009),
which is a scale model of the JWST pupil. A filled pupil is shown
in Figure 1.

Martinache (2010) showed that the singular value decompo-
sition (SVD) of the transfer matrix is separable into mappings be-
tween pairs of orthonormal phase vectors in the pupil and Fourier
planes, and a kernel space of vectors in the Fourier plane to which
no small perturbations in the pupil plane can be mapped.

In particular, we can write this expression as.

Φ = A ·ϕ+ Φ0 (1)

for a transfer matrix A, pupil phases ϕ, observed Fourier
phases Φ and ‘true’ source Fourier phases Φ0. A simple method
for obtaining the matrix A is described in Martinache (2010). We
then obtain the SVD of A,

A = U ·Σ ·VT (2)

The left-annihilator of A, K, is then spanned by the columns
of U corresponding to singular values of zero. It is then possible to
extract kernel phases such that:

K ·Φ = K ·A · ϕ+ K ·Φ0

∴ K ·Φ = 0 + K ·Φ0. (3)

By extracting these kernel phases K · Φ from high-Strehl
astronomical observations, such as from space telescopes or with
assistance from extreme adaptive optics, it is possible to dramati-
cally enhance the signal-to-noise of phase information contributed
by real asymmetries in an astronomical source. Even in the case
of a nominally diffraction-limited space telescope, low-level ther-
mal and vibrational modes of the telescope optics nevertheless con-
tribute to the degradation of the wavefront quality and therefore the
PSF. Using kernel phase analysis, Pope et al. (2013) were able to
obtain high resolution, high-contrast information at and beyond the
formal diffraction limit of the Hubble Space Telescope.

The remaining phase vectors in the SVD can be used to con-
struct a Moore-Penrose pseudoinverse of the phase transfer matrix,
so that small aberrations in the wavefront can be uniquely recon-

structed from the Fourier plane (Martinache 2013). In the follow-
ing, we will briefly outline the inversion method.

It is crucial in this case that the pupil itself not be centrosym-
metric: that is, that under the transformation (x, y) → (−x,−y)
it does not map onto itself. This is because otherwise it is not pos-
sible to distinguish between pupil modes of odd and even parity
under inversion.

With a symmetric pupil, only odd modes of the pupil appear
in the row space and can be sensed when constructing the pseu-
doinverse. Introducing a pupil plane asymmetry, even of a very
small character, breaks this degeneracy, and the pseudoinverse of
this transfer matrix will accordingly map to the full space of pupil
modes.

The column vectors in U provide a set of orthonormal modes
for describing phases in the pupil. The transfer matrix A maps
these one-to-one onto a corresponding orthonormal basis of row
vectors in V, normal modes for the Fourier plane. These can be
thought of as being similar to a symmetry-adapted set of Zernike-
like modes for an arbitrary pupil. The Moore-Penrose pseudoin-
verse A+ maps the vectors back in the opposite direction:

A+ = V ·Σ+
k ·U

T (4)

where Σ+
k denotes the diagonal matrix whose entries are the

reciprocals of the first k diagonal entries of Σ. Examples of these
modes are displayed in Figure 2.

2.2 Software Implementation

In this experiment we have used a Python implementation of the
asymmetric pupil Fourier wavefront sensing algorithm, sharing
several common features with the pysco ‘PYthon Self-Calibrating
Observables’ kernel-phase analysis code. We calculate the pseu-
doinverse from the SVD of the transfer matrix A, including only
the first 200 singular values and corresponding modes out of a total
number of∼ 1000. This cutoff at 200 modes was chosen in order to
help smooth the resultant wavefront estimate, as the mirror phasing
problem requires predominantly low-order information

While A is in general sparse, we take care not to naïvely apply
sparse matrix algebra packages, and instead treat the full matrix in
all operations. We do this in order to preserve small components
of the normal modes, which we found were truncated in the sparse
treatment in such a way as to prevent the convergence of the algo-
rithm.

The algorithm proceeds as follows. The image is loaded, bias-
subtracted, re-centred, the Fourier transform taken, and sampled at
the baselines generated by the pupil model. We then operate on
these uv phases with the transfer matrix pseudoinverse, to obtain
a pupil wavefront map. Next, we fit and subtract an overall tip-
tilt from this map, to account for imperfections in the recentring.
Finally, we obtain the piston, tip and tilt on each segment from
the mean, x gradient and y gradient of the wavefront across the
sampling points.

In all practical cases, these operations are very fast. For a pupil
sampling as dense as in Figure 1, this takes of order several seconds
on a laptop with Intel(R) Core(TM) i7-2760QM CPU running at
2.40GHz. Likewise, the entire process of extracting a wavefront
from a fresh image frame can take as little as two seconds for such
a sampling.

We have not attempted to optimize the computational speed
of this algorithm, which is implemented in pure Python. As the
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Figure 2. Examples of pupil mode patterns calculated for the first non-redundant mask geometry as shown in Figure 4, interpolated onto the convex hull of
the pupil sample set. Colour scale is arbitrary.

density of a pupil sampling increases, the number of uv baselines
grows rapidly, and although required only once, the SVD may be
very slow, or fail to converge. Precalculation of these matrices is
therefore essential.

After this, processing time for a typical single frame in this
experiment is set by the Fast Fourier Transform (FFT) of a 1024 x
1024 image, sampling at the 1872 unique baseline points and mul-
tiplying this vector by a 1874 x 284 matrix. This took ∼ 2 s on our
operating laptop. The FFT step takes 76% of the calculation time
in this case, which we suggest could in AO applications be signif-
icantly improved with more efficient algorithms and hardware. A
high order AO system such as PALM-3000 or SCExAO on a 5-
10 m telescope needs to operate at ∼ kHz rates (Davies & Kasper
2012) and it is not unreasonable to expect this to be achievable.

Future applications should rely on a library of pupil models
pre-computed with high-performance methods. With such high-
performance resources, this approach to wavefront sensing will be
compatible for a very fast closed AO loop. For this experiment,
such a link was maintained between computers controlling the cam-
era and running analysis software using a file-sharing client. In
future implementations, we recommend both operations be con-
ducted on the same computer.

3 APPARATUS

The experimental setup used to test the algorithm is shown in Fig-
ure 3. A Micro-Electro-Mechanical Segmented Mirror (MEMS)
served as an analogue of a typical telescope segmented primary
mirror. The MEMS consists of 37 hexagonal, gold-plated mirrors
arranged in a 4-ring hexagonal close-packed configuration, which
can be adjusted electronically in piston, tip, and tilt, to a precision
of a few nm (Iris AO PT-111 DM Helmbrecht et al. (2011)). Each
hexagonal segment is 700 µm corner-to-corner (or 606.2 µm flat-
to-flat), with the whole MEMS active area measuring ∼ 4.2 mm
in diameter. The MEMS was illuminated by a narrowband laser
source (Tunics Tunable C-band laser) at a wavelength of 1600 nm,
which was injected into a single-mode optical fibre (SMF-28),
and collimated using a reflective fibre collimator (a 90◦ off-axis
parabolic mirror). The reflected light from the MEMS formed an
image on an InGaAs detector array (Xenics Xeva 1.6-640 NIR

Figure 3. Experimental layout used for testing the segment phasing algo-
rithm. A single mode laser source was collimated onto the MEMS, passing
through a mask to remove unwanted stray light from the periphery. Each
segment was controlled in tip, tilt, and piston. The light was then focused
onto an InGaAs NIR detector using an achromatic doublet lens forming the
image. Inset images of MEMS from Helmbrecht et al. (2011).

Camera), focused using a 200 mm focal length NIR achromatic
doublet lens (Thorlabs AC254-200-C-ML). A number of silver
coated mirrors with tip-tilt adjustment were used in the optical path
to steer the beam, ensuring on-centre incidence for all key optical
components.

As mentioned above, the MEMS acted as a scale model for
the JWST pupil. However, because the MEMS has an additional
outer ring of segments when compared to the JWST primary, a
mask was placed at a distance of < 1 mm in front of the MEMS
which blocked out the unwanted segments. To further match the
JWST pupil, a tilt was applied to the central segment such that it
did not contribute any light to the image plane, steering the beam
away from the centre of the detector. The ability to tilt away un-
wanted MEMS segments allowed for an arbitrary layout for various
pupil-shapes to be created for testing the algorithm’s performance.
Examples can be seen in Figure 4.
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Figure 4. Schematics of the various MEMS pupil patterns used to test the algorithm. For all tests, the outer ring of segments was blocked by a pupil mask (gray
segments) and did not contribute light to the final image. The segments which were unwanted were steered away by tilting the segments to their maximum
travel such that they were not focused onto the NIR detector (pink segments). The remaining segments (blue) were used to form the image. This technique
enables the creation of arbitrary segment patterns in the pupil to assess the impact of symmetry-breaking required for convergence, as well as approximating
spider layouts in the pupil.

Our apparatus differs from JWST ’s geometry in another im-
portant respect: while we have tilted away the central segment
which would be blocked by the secondary mirror of the real tele-
scope, we have not attempted to include the spiders which support
this secondary mirror. One should note that with three spiders, the
JWST pupil is already asymmetric, and it will be useful in fu-
ture to establish whether this in itself provides enough asymmetry
for our wavefront sensing scheme. This remains beyond the scope
of the present work. This may raise the question as to whether
the presence of spiders may actually harm the performance of this
method. Since the spiders contribute to the pupil structure only at
very high spatial frequencies, we do not expect them to contribute
detrimentally to wavefront sensing at the low spatial frequencies
required in the mirror phasing problem.

4 RESULTS

In the following Subsections 4.2-4.4 we will discuss the results
of the different wavefront sensing experiments performed: in Sec-
tion 4.1 we describe initial tests establishing the effectiveness of the
technique; in Section 4.2, we phase an entire mirror tilting away a
scalene array of three segments each time; in Section 4.3, removing
a whole quadrant of the full mirror, then with only a single mirror
missing at the edge; and in Section 4.4, without altering the mirror
structure and simulating the asymmetry in the pupil sampling. In
all cases with real pupil asymmetry we recover a high-quality PSF
from an initially-heavily-degraded map; and in the case with asym-

metric sampling but a full pupil, we fail to achieve any significant
restoration of the PSF.

Unfortunately, the NIR camera used in these experiments had
a far lower dynamic range, and far higher noise floor, than that of
state-of-the-art NIR detectors used on modern telescopes. As such,
visualising the faint airy rings without saturating the central spot
was not possible. This is further complicated by high detector non-
linearity at both the low, and high, ADU ranges. While we have
corrected for these, this process will have induced small extra errors
in our measurement.

4.1 Initial Tests

In order to establish the effectiveness of the wavefront sensor, we
initially tested its accuracy using the simplest possible cases. As
mentioned in Section 2.1, the sensor only functions if the pupil
symmetry is broken in some manner. Hence, for our initial exper-
iments we used the Sector Asymmetry Pattern #1 (see Fig 4.) by
tilting away a scalene triangle of segments, providing the greatest
possible pupil asymmetry.

With the pupil pattern established, we set all remaining
MEMS segments to their mechanical zero positions, and recon-
structed a wavefront from an exposure here. We then took this as
our arbitrary zero wavefront for all segments. It is important to note
that while the MEMS is able to zero the pistons of the segments to
an accuracy of 10 nm, there are further wavefront errors and global
tilts induced by downstream optics, for instance mirrors, lens, de-
tector window, so that this zero-point wavefront map is not per-
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Figure 5. Measured segment pistons using the wavefront sensor for seg-
ment #3 (top), #8 (middle), & #19 (bottom). The RMS piston values of
the remaining unpistoned segments are also shown. The highlighted orange
section of the graph shows the region which is outside the 1 rad threshold
(dominated by the cubic term and no longer linear), where the reconstruc-
tion has failed.

fectly flat. However, because in the experiments presented in this
subsection we measure a relative piston compared to an arbitrary
starting position, and not an absolute piston, this differential tech-
nique is adequate to demonstrate the wavefront sensor’s applicabil-
ity.

MEMS segments 3, 8, & 19 (see Fig. 4.) were independently
pistoned from−300 nm to +300 nm in 20 nm increments. At each
step an image was taken of the resulting PSF and the wavefront
reconstructed by our algorithm. After the phase-map was normal-
ized to the zero reference map, piston of all active segments were
extracted. An important subtlety is that the measured wavefront pis-
ton is actually twice the MEMS segment piston, because the light
reflecting off the segment acquires an optical path length difference
in both directions.

Figure 5 shows the accuracy of the wavefront sensor’s pis-

ton measurement for the three segments that were pistoned. As can
be seen in Fig. 5, the reconstructed piston on the correct segment
tracks the input values very closely (within the measurement er-
ror of 10%) between −135 nm & +300 nm of piston, outside of
which (< −135 nm) it varies more or less wildly. This is in ac-
cordance with our expectation that for input errors larger than a
threshold value of 1 rad the reconstruction should fail, as the cubic
term dominates over the linear term. We note that this in practice
occurred for relatively small negative values, but maintained its ac-
curacy for positive values for as far as we tested; this may be owing
owing to phase offsets from the zero-phase reference level, which
was biased such that the ‘error centre’ took a positive value. Also
shown in Fig. 5 is the mean residual measured pistons from the
remaining unpistoned segments.

We note that the wavefront recorded for the other segments
varies in proportion to the pistoned segment. This gives rise to an
RMS wavefront error across the pupil that grows monotonically
with any local error. We conjecture that the reason for this is the
choice of basis. The phase is projected onto a truncated basis of
modes supported on a limited, discrete set of points. Accordingly a
large phase error near an anti-node of one of these modes is liable
to bias the reconstruction across the whole pupil. Because this bias
is monotonic with the input, when a negative feedback loop is ap-
plied, as in the following experiments, it will in general be ironed
out as the iterations progress and will not significantly affect con-
vergence of the algorithm.

4.2 Non-Redundant Triplet Asymmetries

As noted in Section 2.1, the singular value decomposition con-
structs two basis sets to span the pupil and Fourier planes. While
the method only requires that the pupil possess no inversion sym-
metry, it is apparent from simple inspection of the generated pupil
modes that they are by construction symmetry-adapted to any other
symmetries present in the pupil, most notably lines of reflection
symmetry.

It therefore seemed most promising for an initial test to phase
a pupil with no symmetries at all. One choice is to remove first
one scalene triangle of segments, and then bring these back in and
remove a complementary triplet non-redundant with respect to the
first. In this manner, all Fourier components and all mirror segments
are sensed, and there are no spatial symmetries in the pupils used
for sensing.

The remaining mirrors were set to their fiducial flat configura-
tions. Then, random pistons and tip-tilts were drawn from normal
distributions with variances of 300 nm and 0.3 mrad respectively,
and applied to the MEMS controls. These errors were chosen such
that at the 1600 nm wavelength the RMS error would be just be-
yond of the expected ∼ λ/2π = 250 nm limit for the linear phase
regime.

Starting the loop from this point, we ran the PSF restoration
loop first for the first non-redundant pattern shown in Figure 4,
which removed segments 3, 15, & 19. As shown in Figures 6, the
PSF was quickly restored.

In order to phase the entire mirror including the inactive seg-
ments, we tilted these back to their fiducial zero positions and tilted
away three phased segments as shown in Pattern 2 of Figure 4. We
repeated the procedure here, and similarly obtained a high quality
PSF.

By then restoring the settings of the segments removed in the
first pattern, we were then able to phase the entire mirror. Unfortu-
nately, the final phased mirror configuration led to saturation of the
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central pixels, which was noticed only in subsequent analysis. Nev-
ertheless, it is visually apparent from inspection of the PSF that the
diffraction pattern agrees extremely well with that calculated for
the diffraction limit of a flat pupil.

4.3 Wedge and Single Mirror Asymmetries

We repeated the previous experiment for two other asymmetries:
first, with the wedge asymmetry as shown in Figure 4, and second,
with the single-mirror asymmetry. In both cases the algorithm con-
verged to a high-quality PSF as with the non-redundant pattern.

During the first attempt with the wedge asymmetry, we noted
that one mirror’s piston position as recorded by the controller was
approximately 800 nm away from the others, that is, half the wave-
length of the 1600 nm laser used as the light source. This suggested
that while the wavefront appeared flat under this monochromatic
source, this was because the Fourier wavefront sensing approach is
insensitive to a 2π wrapping in phase. We therefore manually ad-
justed this mirror 800 nm down, near to the settings for the other
mirrors, and found that the algorithm quickly converged again to a
diffraction-limited PSF.

The results of both experiments are displayed in Figure 6.
In this case, for both pupil configurations no such saturation

occurred, and we were able to estimate the final Strehl ratio. In
order to avoid a bias from residual scattered light, we did not di-
rectly calculate the overlap integral with a diffraction-limited PSF,
but rather calculated radial encircled energy profiles for measured
and theoretical images. These were calculated for the diffraction
limit, and for a 99.0% Strehl ratio PSF simulated for the manufac-
turer’s quoted position accuracy limit for the MEMS, with segment
positions drawn from a uniform distribution between ± 10 nm in
piston and± 0.05 mrad in tip-tilt. Simulated PSFs with 97% Strehl
ratio were a poor fit to the experimental profiles. We therefore con-
clude that the final Strehl S was in the range 0.97 < S < 0.99.
Nevertheless, for all images there were departures at large radial
distances, which we suggest are due to contamination with stray
light. From these calculations we argue that in the inner regions of
the PSF we attain performance limited primarily by the tolerance of
the MEMS positioning, and closely approach the diffraction limit.

4.4 No Asymmetry

In Section 2.1, it was stated that the matrix pseudoinverse does not
span the whole range of symmetric and antisymmetric modes of the
pupil unless the pupil model itself is asymmetric. From this it is not
immediately apparent that an asymmetric sampling of a symmetric
pupil would not permit the sensing of all modes.

In order to test this, we tilted all mirrors on-axis apart from the
centre panel, and deleted one point from the pupil sampling in order
to make it asymmetric and obtain a matrix with modes spanning all
the required modes. After randomizing the on-axis mirror settings
as previously, we attempted to phase the mirror as before. After
seventeen iterations there was no sign of improvement at all in the
PSF, and we concluded that the method was ineffective in this case.

This is to be expected on theoretical grounds, as for an even
mode of an even pupil, the phase of the autocorrelation vanishes
and we expect no signal in the Fourier plane, irrespective of the
pupil model adopted in computation.

5 CONCLUSIONS

This paper provides experimental evidence that the focal-plane
wavefront sensing technique proposed by Martinache (2013) is
sound: even for a segmented aperture, it is possible to directly sense
aberrations from the analysis of a single aberrated PSF, if one in-
troduces some asymmetry in the pupil. From the above results, it
is clear that largely independent of the degree or structure of asym-
metry, mirror phasing was rapid and effective. It is not possible
based only on these results to suggest an optimal asymmetric mask
strategy; on the other hand, it is clear that the algorithm is very for-
giving with respect to the pupil geometry. It may accordingly be a
fruitful direction for future simulations to optimize the pupil mask
geometry and any effect that telescope spiders may have.

This new wavefront sensing method is immediately applica-
ble to several existing and near-future systems where a high-quality
wavefront is degraded by quasi-static wavefront errors arising from
small optical aberrations. As this experiment has shown, the prob-
lem of phasing a segmented mirror such as the upcoming James
Webb Space Telescope is easily solved by this method. While the
initial optical path error following unfolding is likely to be of or-
der ∼ tens of µm, and other methods will be required to achieve
coarse phasing, our approach is suitable as a ‘tweeter’ on top of
this by which the mirror shape can be fine-tuned and maintained.
In this way, it will be possible to have an equivalent of ‘active op-
tics’ to maintain a uniformly high quality wavefront by adjusting
the JWST segments, requiring only that it briefly observe a bright
point source.

A second example in which this method can be applied is in
correcting static NCP-error on ground-based telescopes with AO.
This NCP-error is in many high contrast imaging applications the
limiting error source (e.g. in Crepp et al. (2011)) and a variety of
solutions have been proposed (Thomas et al. 2012; N’Diaye et al.
2013). Few of these, with the exception of Ren et al. (2012), avoid
the necessity of introducing substantial additional hardware into
the beam path, with the attendant costs of time, expense and resid-
ual optical errors. Ren et al. (2012) present a novel and effective
algorithm for attaining a particular desired PSF, but the method
demonstrated here has the advantage of producing a flat wavefront
quickly, for an arbitrary pupil, without model-dependent distortions
and suitable for general observing.

In applications where the readout speed of a camera can be
made much faster than the atmospheric coherence time t0, the tech-
nique demonstrated here would appear an ideal method of high-
order wavefront sensing. This will be the case in any situation in
which speckle interferometry might ordinarily be done, and is ac-
cordingly restricted only to bright targets.
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Figure 6. Demonstration showing active phasing of the MEMS mirror using the wavefront sensor in a semi-closed loop. The left column identifies the active
area of the MEMS, with specific segments tilted away to create different asymmetries (as described in more detail in Fig. 4). The middle two columns show
the uncorrected PSF, formed by randomly inducing pistons, tip, and tilts to the MEMS, and the final corrected PSF after running the phasing algorithm for 10
loops. The far right column shows the ideal theoretical PSF for the particular MEMS geometries. All images are fifth-root stretched such that the Airy pattern
is clearly visible.

c© 0000 RAS, MNRAS 000, 000–000



Wavefront Sensing from the Image Domain 9

Booth, M. J. 2007, Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 365,
2829

Campbell, H. I., Zhang, S., Greenaway, A. H., & Restaino, S.
2004, Optics Letters, 29, 2707

Crepp, J. R., Pueyo, L., Brenner, D., et al. 2011, ApJ, 729, 132
Davies, R. & Kasper, M. 2012, ARA&A, 50, 305
Give’on, A., Kern, B., Shaklan, S., Moody, D. C., & Pueyo, L.

2007, in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 6691, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series

Give’On, A., Kern, B. D., & Shaklan, S. 2011, in Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Se-
ries, Vol. 8151, Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series

Guyon, O. 2005, ApJ, 629, 592
Helmbrecht, M. A., He, M., Kempf, C. J., & Besse, M. 2011, in

Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series, Vol. 7931, Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series

Hinkley, S., Oppenheimer, B. R., Brenner, D., et al. 2008, in Soci-
ety of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, Vol. 7015, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series

Hinkley, S., Oppenheimer, B. R., Zimmerman, N., et al. 2011,
PASP, 123, 74

Ireland, M. J. 2013, MNRAS, 433, 1718
Keller, C. U., Korkiakoski, V., Doelman, N., et al. 2012, in Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Vol. 8447, Society of Photo-Optical Instrumentation En-
gineers (SPIE) Conference Series

Kendrick, R. L., Acton, D. S., & Duncan, A. L. 1994, Appl. Opt.,
33, 6533

Kotani, T., Lacour, S., Perrin, G., Robertson, G., & Tuthill, P.
2009, Optics Express, 17, 1925

Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., & Artigau, É.
2007, ApJ, 660, 770

Lane, R. G. & Tallon, M. 1992, Appl. Opt., 31, 6902
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau,

D. 2006, ApJ, 641, 556
Martinache, F. 2010, ApJ, 724, 464
Martinache, F. 2013, PASP, 125, 422
Martinache, F., Guyon, O., Clergeon, C., & Blain, C. 2012, PASP,

124, 1288
N’Diaye, M., Dohlen, K., Fusco, T., & Paul, B. 2013, A&A, 555,

A94
Pope, B., Martinache, F., & Tuthill, P. 2013, ApJ, 767, 110
Ragazzoni, R. 1996, Journal of Modern Optics, 43, 289
Ren, D., Dong, B., Zhu, Y., & Christian, D. J. 2012, PASP, 124,

247
Roddier, F. 1988, Appl. Opt., 27, 1223
Sauvage, J.-F., Mugnier, L., Paul, B., & Villecroze, R. 2012, Op-

tics Letters, 37, 4808
Thomas, S., Poyneer, L., Savransky, D., et al. 2012, in Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Vol. 8447, Society of Photo-Optical Instrumentation En-
gineers (SPIE) Conference Series

Thomas, S. J., Give’On, A. A., Dillon, D., et al. 2010, in In the
Spirit of Lyot 2010

Tuthill, P., Lloyd, J., Ireland, M., et al. 2006, in Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series,
Vol. 6272, Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series
Zernike, F. 1934, MNRAS, 94, 377

c© 0000 RAS, MNRAS 000, 000–000


	1 Introduction
	2 Phase Transfer Algorithm
	2.1 Theory
	2.2 Software Implementation

	3 Apparatus
	4 Results
	4.1 Initial Tests
	4.2 Non-Redundant Triplet Asymmetries
	4.3 Wedge and Single Mirror Asymmetries
	4.4 No Asymmetry

	5 Conclusions

