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Abstract. This paper introduces kernel-phase, a framework de-
veloped to generalize and extend the application of closure-phase as
it is used in the context of non-redundant aperture masking inter-
ferometry, that is compatible with a pupil of arbitrary geometry, if
wavefront errors are small. This generalization has some powerful
applications: large amounts of classical imaging archival AO and/or
space borne data can be processed and lead to re-interpretation, in
the light of this interferometric point of view of classical telescope
image formation. Recent developments involving noise decorre-
lation procedures take kernel-phase one step closer to being the
optimal observable extractable from an AO diffraction limited im-
age or interferogram acquired from a rich interferometric array.
While direct applications are so far mostly concerned with AO
imaging, the ideas presented here are very relevant to interferom-
etry at large: the framework offers a refreshing look at observing
and data reduction strategies, in a manner that scales very well
with the complexity of the interferometric array. The paper also
shows that the linear algebra formalism used for kernel-phase al-
lows for a very direct and computationally efficient approach to
interferometric imaging.

1. Introduction

The observational success of optical interferometry relies for the most
part on the properties of well defined and therefore well understood
observable quantities: the visibility and the closure-phase (when three
or more baselines are used simultaneously), used as proxies for mea-
surements of local coherence of the electric field. From a finite number
of well characterized visibilities and closure-phases, and without intro-
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ducing too much a priori information, interferometry makes it possible
to infer high-fidelity models or images of a wide variety of sources in a
regime of resolution that goes beyond what is usually thought as possi-
ble when one is used to dealing with single-telescope observations.

These properties of interferometry, and the fact that it can beat
the generally accepted Rayleigh resolution criterion, a regime referred
to as super-resolution, have motivated its deployment back on single
telescopes, where it is either called non-redundant masking (NRM) or
sparse aperture masking (SAM) interferometry, first seeing-limited, and
more recently used in conjunction with adaptive optics (AO).

These observations differ from most of the usual long-baseline in-
terferometry in the all-in-one (Fizeau) recombination of a fairly large
number of baselines (from tens to hundreds) that lead to interferograms
looking not that different from conventional diffraction limited images,
except in the structure of point-spread function (PSF) halo. The legacy
of long-baseline interferometry is however very strong, and except for
some more recent attempts at working in the image plane (Lacour et
al, 2011), the bulk of the work is done by working on the Fourier coun-
terpart of the image, where complex visibilities are extracted, to be
processed and form squared visibilities and closure-phases, familiar to
users of long baseline interferometry.

As we move toward interferometric combiners involving an increas-
ing number of telescopes such as the VLTI 4-telescope combiners MA-
TISSE (Lopez et al, 2012) and GRAVITY (Eisenhauer et al, 2011) or
the 6-telescope combiner MIRC (Monnier et al, 2012) for the CHARA
array, it seems appropriate to look back and reflect upon what single
dish interferometric observations, already effectively combining up to
several hundreds of apertures, can teach.

What comes out of this examination is that while it is possible
to strictly adhere to the principles of long baseline interferometry, and
maintain the use of canonical visibilities and closure-phase, this ap-
proach doesn’t scale up well. One indeed ends up with a large number
of highly correlated observables and is forced to work with a strictly
non-redundant pupil that becomes cumbersome and inefficient when
working with a large number of apertures.

Recent years have witnessed the introduction of a generalisation of
the notion of closure-phase, a concept called kernel-phase that offers an
efficient way of working with Fourier-phase information in the context
of rich arrays. The framework of kernel-phase relies on a linear approxi-
mation that is for now only valid in a regime where piston errors are less
than ∼1 radian. While the direct application of techniques presented in
this paper is limited to this low piston error regime, the general ideas
remain relevant to a wider set of conditions. The immediate advantage
of kernel-phase over canonical closure-phase is that it can very well be
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Figure 1.: Example of closure phase relation. Superimposed on the im-
age of the non-redundant pupil geometry shown in the left panel, is one
of the possible closure triangles. The central panel shows the power-
spectrum of one image acquired with one such pupil: each active region,
often refered to as a splodge, is associated to a baseline in the pupil.
The three splodges associated to the baselines chosen in the left panel
are highlighted. On the right, are written relations for the phases of each
splodge: the measured phase is the sum of a term intrinsic to the target
being observed (the “true” phase), and an atmospheric term: the piston
along the baseline. The reader will quickly observe that by adding these
three relations together, the atmospheric term simply vanishes, leading
to a new observable quantity, called the closure-phase.

extracted from Fizeau interferograms acquired with a redundant array:
the technique is therefore relevant to both sparse pupil interferometry
and conventional imaging. Section 2. of this paper shows how linear
algebra formalism offers a convenient extension of the classical model
of closure-phase suited to rich arrays, used in section 3. to introduce a
generalisation of the closure-phase: the kernel-phase. Section 4. shows
how kernel-phase is used to process AO data for high contrast imaging
while section 5. introduces further development that shape the defini-
tion of better interferometric observables. Section 6. explores the use
of kernel-phase for interferometric imaging.

2. A linear model for the Fourier-phase

The basis for the linear model leading to the definition of kernel-phase
is easily grasped if one goes back to the NRM scenario and write sim-
ple equations for the phase. Fig. 1 describes the mechanism that links
pupil phase and Fourier phase for a 9-hole non-redunant mask. A trian-
gle of baselines in the pupil is highlighted along with the corresponding
uv-locations in the powerspectrum. Expressions for the phase sampled
at those three points are provided. By simply adding them, the piston
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terms cancels out: the result of this addition, called the closure-phase
is therefore insensitive to residual pupil phase errors and contains infor-
mation about the observed source only, making it a robust and powerful
observable.

The 9-hole NRM used for this example allows to simultaneously
measure 36 distinct phases in the uv plane. These 36 relations, all very
similar to the ones highlighted in Fig. 1, can be gathered using the
following matrix form:

Φ = ΦO + A · ϕ, (1)

where Φ is a 36-component vector encoding the phase sampled in the
Fourier plane, ΦO a 36-component vector encoding the true target phase
information and ϕ a 8-component representing the instrumental pupil
phase (9-1 components since one aperture is chosen as piston reference).
The important element of this model is the 36×8 transfer matrix A that
describes the way the pupil phase propagates into the Fourier plane.

For this example, A is essentially filled with zeros, except for two
positions per row, that respectively contain +1 and −1. In general
terms, a closure relation can be thought of as a combination of rows
of A that produce a zero vector. The closure-phase is a special case of
linear relation, that simply adds together selected rows of A to give the
zero-vector. More complex relations involving more than three rows of
A can however be produced.

Nevertheless, the total number of independent relations remains
constant, and is exactly 28 in this scenario. Closure relations form a
basis for the left-hand null space (or Kernel) of A. These relations can
be gathered into a left-hand operator K that acts on A so that:

K · A = 0. (2)

Although already abstract, the canonical closure-phase is a conve-
nient concept that is easy to grasp. Moreover, it is a natural choice
and the only possible closure relation when the pupil is made of only
three sub-apertures. In practice for a baseline-rich pupil like the 9-hole
case used as an example, closure-phase alone is not the best solution,
as similar triangles in the pupil do exhibit correlated closure-phases.
The formalism introduced in this section will allow to directly produce
relations that produce observables containing decorrelated signals.

3. Kernel-phase as a generalized closure-phase

What may at first be perceived as a complicated sleight of hand (the
matrix form) to refornulate an otherwise simple and elegant idea (the
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closure-phase) reveals its true power when one looks beyond the usual
strict non-redudant scenario of interferometry. For a rich arbitrarily
shaped interferometric aperture such as the one of an unmasked tele-
scope in the context of NRM-interferometry, lies an additional com-
plication: baselines in the pupil are highly redundant and the useful
interferometric signal ΦO finds itself buried under multiple phase error
contributions, resulting into a fairly complex (non-linear) expression for
the kth component of the Fourier phase vector:

Φk = Φk
0 + Arg(ejΣi∆ϕi), (3)

where i is an index to keep track of the r identical baselines in the pupil,
contributing to the same region of the uv plane. With a good wavefront
correction (this approach has been validated both on space-based and
ground-based data) - eq. 3 can be linearized as follows:

Φk = Φk
0 +

1

r

∑
i

∆ϕi, (4)

and the entire problem can again be written in the matrix form of eq.
1, with a modified transfer matrix. In this more general (redundant)
scenario, each row of A now contains more than just two non-zero
values. Whereas canonical closure-phases can no longer be extracted
from data acquired under such conditions, it is still possible to find a
left-hand operator K that verifies eq. 2.

While it is possible to identify by hand, friendly looking relations
very much in the spirit of closure-phases if the pupil geometry is not
too complex, it quickly becomes difficult when the transfer matrix A
quickly gets quite big. The linear form of eq. 2 however enables the use
of powerful tools of linear algebra, and a very efficient way of building
the operator K is to calculate the singular value decomposition (SVD)
of A.

Among its mony other properties, the SVD indeed explicitly con-
structs an orthonormal basis for the right and left-hand side null-spaces
of a matrix. The total number of kernel-phase relations nK is given
by the number of zero singular values of A. The SVD of A writes as:
A = UΣVT, where Σ is a diagonal matrix containing the singular
values of A, and U and VT are unitary matrices.

One of the best possible set of kernel-phase relations can be found
in the columns of U that correspond to zeros on the diagonal of Σ.
They form an orthonormal basis for the left null-space (or kernel) of
the phase transfer matrix, hence the name kernel-phase.

Gathered into the operator K, these relations are then applied
to the phase measured in the Fourier plane Φ, to extract information
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Figure 2.: Example of discrete model used to construct the operator A.
Left: discrete model of the instrument pupil, here following a regular
hexagonal grid. Right: resulting distribution of spatial frequencies sam-
pled by this geometry.

about the target of interest that is immune to residual instrumental
phase errors:

K · Φ = K · ΦO. (5)

4. Kernel-phase in practice

In practice, finding the phase transfer matrix A requires to build a
discrete model of the pupil used to acquire the data. Fig. 2 shows the
example of a model used to describe the “medium cross pupil” of the
Palomar Hale Telescope PHARO instrument. A good discrete model
requires a regular grid pattern, whose density is representative of the
continuous pupil.

The model shown in Fig. 2 decomposes the telescope pupil into 332
interferometric apertures that map onto a 1128 distinct sample points
in the Fourier domain. The SVD of the resulting 1128×332 operator A
reveals that using this model, 962 kernel-phases can be extracted from
any single image, assuming that it is at least Nyquist-sampled, which
means that 85 % (962 kernels out of a total of potentially available 1128
phase samples) of the phase information is directly recoverable.

Once the paving of the uv-plane and the matching kernel-phase
relations are identified, they are saved in a template and used for ex-
tracting the phase information from the data. Before being Fourier-
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Figure 3.: Example of kernel-phase result obtained on ground based AO
data. Left: map of the χ2 in the position angle - angular separation
space for α-Ophiucus, observed with PHARO at the Palomar Hale Tele-
scope, using the model shown in Fig. 2. A red circle highlights the
location of the minimum χ2. Right: correlation plot between the ker-
nel-phase data and the binary model for the corresponding location in
the χ2 space. The image snippet shows (red arrow) that the 30:1 com-
panion is apparently invisible, hidden under the first diffraction ring.

transformed, frames undergo traditional dark subtraction and flat-
fielding procedure. Additionally, to limit the impact of detector read-
out noise, the data can can be windowed, for instance with a “super-
Gaussian” (exp−(r/r0)4) radial profile. After the frame is Fourier-
transformed, the phase is sampled at the relevant (u, v) coordinates and
assembled into the vector Φ. Assuming that the data is at least Nyquist-
sampled allows all spatial frequencies to be extracted. Kernel-phase
observables KΦ are constructed using the pre-determined relations for
each frame. Multiple frames on a given target and/or the availability
of frames acquired on single stars allow further characterization of the
Ker-phase data, using statistics and/or additional calibration.

Fig. 3 showcases the result of such data analysis, using the model of
the PHARO medium cross pupil of Fig. 2, and applying to actual AO-
corrected data acquired with this instrument. The target, α-Ophiucus,
is a well known binary with a well characterized, eccentric orbit with
an 8.6 year period (Hinkley et al, 2011). The kernel-phase analysis of
multiple PHARO frames acquired in the K-band revealed the presence
of the 30:1 contrast companion at a position angle 274.6◦, but at an
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angular separation 136.1 mas (∼ 1.5λ/D), that is directly underneath
the first diffraction ring.

After extraction, the kernel-phases are used as constraints in a
3-parameter binary model (separation, position angle and contrast).
Conventional likelihood analysis and/or Monte-Carlo simulations pro-
vide a binary solution or contrast detection limits. The companion,
undetectable in the direct image, due to variance in the PSF, is clearly
detected using this approach. The position deduced from the binary
model fit is in very good accordance with the ephemerides of the orbit.

5. Beyond kernel-phase

By construction, the different signals encoded in kernel-phases form an
orthonormal basis, that makes them ideal linearly independent entries
for a parametric model such as the one used in the previous example,
or a more general image reconstruction software. In practice, this con-
struction however does not guarantee statistical independence. If not
accounted for, noise processes affecting the image (where the detection
process really happens) can very well lead to correlated Fourier-phases,
that will result in correlated observables. In addition to building ob-
servables that linearly independent in terms of signal, it is therefore also
necessary to make them statistically independent in terms of noise.

This is the observation made by Ireland (2013), who proposes to
further improve the observables, by carefully computing the associated
covariance matrices for the visibility and the Fourier-phase. Several
noise processes are expected to lead to correlated Fourier-phases: pho-
ton noise, detector readout noise or lag in the AO correction; are the
first of a potentially long list.

It is possible to determine this covariance matrix using simulations
or formal calculations for the best understood phenomena. In practice
however, the combined effect of all sources of noise can be taken into
account by observing a point source calibration star, right before or af-
ter the target of interest, under observing conditions (seeing, elevation,
source magnitude and color, AO parameters) as close as possible to the
ones experienced on the target of interest. The kernel-phases recorded
on a point-source should all average to zero, but the statistical prop-
erties of the Fourier-phase recorded in multiple successive frames will
inform about the correlation properties of the different noise processes.

If one calls this experimental covariance matrix for the Fourier-
phase CF = cov(Φ), the covariance matrix for the kernel-phase CK

writes as:
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CK = cov(KΦ) = K · cov(Φ) · KT = K · CF · KT (6)

The covariance being a square, positive semi-definite matrix, it can
be diagonalized using a form simpler than that of the SVD:

CK = S · D · ST, (7)

where S is a unitary matrix and D a diagonal matrix containing the
eigen values of CK. The important element of this decomposition is S,
which allows to turn previously correlated kernel-phases into a set of
statistically independent kernel-phases θ:

θ = S · K · Φ. (8)

Using photon noise simulations on kernel-phase in the context of
high-contrast detection, Ireland (2013) shows that this simple procedure
improves the contrast detection limits in a very convincing manner.
Kernel-phase, as initially described in (Martinache 2010), exhibits a
fairly uniform contrast detection limit beyond a separation greater than
λ/D, which is unlike any standard imaging contrast detection limits
rapidly increases as a function of angular separation.

After diagonalizing the effect of photon noise on kernel-phases, us-
ing the statistically independent observables introduced in Eq. 8, Ire-
land (2013) show that contrast detection limits increase as a function
of angular separation, and exhibit an overall performance superior over
correlated kernel-phases.

6. Kernel-phase imaging

Most of work so far done with kernel-phase extracted from AO data
has been applied to high contrast detection of binary sources. This
application uses the χ2-minimization approach of a 3-parameter model
(angular separation, position angle and contrast). Results of this tech-
nique can be found in (Martinache, 2010; 2012) and (Pope et al, 2013).

A binary model search is a very well constrained problem, with only
three degrees of freedom for a generally large numbe of kernel-phases.
Here we look into the application of a less constrained problem: a more
generic imaging test case, like what is routinely done in radio interfer-
ometry and can be achieved on some bright sources with long baseline
optical interferometry. The Van-Cittert Zernike theorem relates the
brightness distribution of the source being observed to measurements
of the coherence of the electric field in the uv-plane, itself estimated
from the visibility and/or the phase of the interference function.
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Figure 4.: Kernel-phase image reconstruction experiment, comparing
the phase (and resulting image) reconstruction achieved by a full pupil
(top row) to the one achieved by annulus (bottom row). Each row suc-
cessively shows (from left to right): the pupil, the true uv-phase-map
of a simulated source (identical in both cases), the uv-phase-map re-
constructed from kernel-phases alone, the reconstruction error and the
kernel-phase image, determined from a direct inverse Fourier Trans-
form of the reconstructed phase-map. Note: all six phase-maps use the
same color-scale.

The quality of the brightness distribution map reconstructed from
the interferometric measurements greatly depends on the density of the
uv-coverage offered by the array. For a given number of apertures in a
sparse geometry, the richest coverage is obtained when a non-redundant
pattern is used. Geometries used for NRM-interferometry typically rely
on the designs established by Golay (1971) that use three-fold symmetry
to produce a compact and dense uv-coverage.

Yet there is a limit to how rich the uv coverage can get while main-
taining non-redundancy in a finite spectral bandwidth when the array
footprint needs to be contained within say a circle. We have seen that
kernel-phase makes strict non-redundancy a non-necessary requirement.
A comparative study of several pupil geometries (Martinache, 2012) has
shown that even when they provide identical uv-coverage, some config-
urations do provide a better phase information recovery-rate, defined
as the ratio of the number kernel-phase nK and the number of baselines
nUV . A good (and often exact) estimate of the number of kernel-phases
that can be extracted from an array made of nA apertures is:
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nK = nUV − nA
2
, (9)

indicating that for a given uv-coverage, the array with the smallest
number of aperture will provide the highest phase information recovery
rate: an annular geometry seems to provide an optimal. The results
presented in this section use the anticipated geometry of the thirty me-
ter telescope (TMT) primary mirror for a test scenario. The sampling
of the uv plane is made so as to produce baselines that match the hexag-
onal grid of the 492 segments making the primary. Keeping only the
outermost 78 segments provides access to the same uv-coverage and re-
sults in a total phase information recovery rate ∼ 96 %, to be compared
to the ∼ 75 % the full pupil would give.

One very convenient consequence of expressing the phase relations
in terms of linear algebra (cf. eq. 1) is that the matrix form allows the
construction of a pseudo-inverse to the kernel-phase operator K+.

Even for a full-aperture, K preserves a large fraction of the original
uv-phase information while clearing it of all residual wavefront error.
The use of a pseudo-inverse K+ is therefore expected to yield direct
access to a reasonably accurate representation of the true object uv-
map Φ′O. The uv-phase estimate:

Φ′O = K+ · K · Φ, (10)

can directly be used as input for an interferometric imaging program.
Fig. 4 compares the phase reconstruction capability of this approach
on the full pupil and the annulus. We can verify that both geometries
manage to preserve a large fraction of the uv-phase information: while
some differences can be appreciated in the fidelity of the pseudo-inverse
by comparing the reconstruction error maps, the features of the images
determined from direct inverse Fourier transform of the phase-maps,
differ very little and are very close to what a reconstruction relying
on a perfect knowledge of the phase would achieve. Admittedly, the
simulation is simplistic. It nevertheless confirms that the pseudo-inverse
approach is sound. The K+ ·K operator can easily be used as a way to
bypass the abstract kernel-phase intermediate as a direct way to work in
uv-phase space. A small fraction of the uv-phase is lost in the process,
but the instrumental phase errors are filtered out. These cleaned uv-
phase can in turn be related to the source brightness distribution map,
like what is shown in Fig. 4.
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7. Conclusions

This paper has introduced the idea of kernel-phase, a generalization of
the more usual notion of closure-phase that can be used in the con-
text of an all-in-one Fizeau combiner, regardless of the array geometry.
Kernel-phase relies on a simple linear model that describes the way in-
strumental phase errors propagate into the uv-plane, and pollute the
information relevant to the target of interest. This formal approach
allows for the deployment of powerful computational tools: singular
value decomposition and pseudo-inverses, which combined with further
noise decorrelation procedures, allow for optimal information extraction
strategies, relevant to a wide range of applications: from high contrast
detections to general interferometric imaging.

To keep things going in one direction, this paper has voluntarily
excluded the applications of the linear model relevant to wavefront sens-
ing. Interested readers should refer to (Martinache, 2013) for further
details about this complementary problem that isn’t concerned with the
kernel- but with the eigen-phases of the phase transfer operator A.

It should finally be mentioned that the discussion has been re-
stricted to the study of the phase in the uv-plane, and therefore excluded
all consideration for the amplitude of the complex visibility. Yet, one
knows that simultaneously combining four baselines and more should
enable the determination of a closure-amplitude in addition to several
kernel-phases. One wonders whether an adaptation of the formalism
used here is possible so as to propose a comparable treatment for the
amplitude. While this question is being investigated, it is not obvious
whether such a treatement is possible.
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